Metallothionein Gene Expression in Liver of Rats Exposed to Cadmium and Supplemented with Zinc and Selenium

  • Mohamed BanniEmail author
  • Imed Messaoudi
  • Lamia Said
  • Jihen El Heni
  • Abdelhamid Kerkeni
  • Khaled Said


Cadmium (Cd), one of the most widely distributed heavy metals, is highly toxic to humans and animals. It is well known that zinc (Zn) and selenium (Se) administration reduce the Cd-induced toxicity and that metallothioneins can have a protective effect to mitigate Cd toxicity in biological systems. In this study we report the expression analysis of the two metallothioneines gene classes MT-1 and MT-2 as well as the total metalloprotein content in the liver of rats exposed to Cd (200 ppm), Cd + Zn (200 ppm + 500 ppm), Cd + Se (200 ppm + 0.1 ppm) or Cd + Zn + Se (200 ppm + 500 ppm + 0.1 ppm) in their drinking water for 35 days. Metals accumulation was quantified in rat liver. Cd decreased significantly the hepatic concentrations of Se and increased those of Zn. The treatment of Cd-exposed rats with Se alone or combined with Zn reversed the Cd-induced depletion of Se concentrations in the liver. However, Zn or Zn + Se administration significantly increased the liver Cd uptake and had no effect on the Cd-induced increase in hepatic concentrations of Zn. The molecular assay showed a decreasing trend of MT-1 relative gene expression levels in animals supplemented with Zn (6.87-fold), Se (3.58-fold), and their combination (1.69-fold) when compared to Cd-treated animals (16.22-fold). Upregulation of the MT-2 expression were recorded in all conditions, although fold induction levels were less pronounced than MT-1 expressions. Our data suggest that the well-established protective effect of Zn and Se against Cd-induced toxicity passes through non-MT gene expression mechanisms, being more dependent on the oxidative stress status of the cell.


Oxidative Stress Status Upstream Stimulation Factor Relative Expression Software Tool Reverse Transcriptase Reaction Mixture Fold Induction Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by funds from “ Ministère de l’Enseignement Supérieur et de la Recherche Scientifique; UR “Biochimie et Toxicologie Environnementale,” and UR “Génétique, Biodiversité et Valorisation des Bioressources, Institut Supérieure de Biotechnologie de Monastir.”


  1. Brzoska MM, Galazyn-Sidorczuk M, Rogalska J, Roszczenko A, Jurczuk M, Majewska K, Moniuszko-Jakoniuk J (2008) Beneficial effect of zinc supplementation on biomechanical properties of femoral distal end and femoral diaphysis of male rats chronically exposed to cadmium. Chem.Biol Interact 171:312–324CrossRefGoogle Scholar
  2. Chen L, Liu L, Huang S (2008) Cadmium activates the mitogen-activated protein kinase (MAPK) pathway via induction of reactive oxygen species and inhibition of protein phosphatases 2A and 5. Free Radical Biol Med 45(7):1035–1044CrossRefGoogle Scholar
  3. Cherian MG, Jayasurya A, Bay BH (2003) Metallothioneins in human tumors and potential roles in carcinogenesis. Mutat Res 533:201–209Google Scholar
  4. Choi CY, An KW, Nelson ER, Habibi HR (2007) Cadmium affects the expression of metallothionein (MT) and glutathione peroxidase (GPX) mRNA in goldfish, Carassius auratus. Comp Biochem Physiol C: Toxicol Pharmacol 145:595–600CrossRefGoogle Scholar
  5. Cui L, Takagi Y, Wasa M, Iiboshi Y, Inoue M, Khan J, Sando K, Nezu R, Okada A (1998) Zinc deficiency enhances interleukin-1-induced metallothionein-1 expression in rats. J Nutr 128:1092–1098Google Scholar
  6. Dalton T, Palmiter RD, Andrews GK (1994) Transcriptional induction of the mouse metallothionein-I gene in hydrogen peroxide-treated Hepa cells involves a composite major late transcription factor/antioxidant response element and metal response promoter elements. Nucleic Acids Res 22:5016–5023CrossRefGoogle Scholar
  7. Dondero F, Piacentini L, Banni M, Rebelo M, Burlando B, Viarengo A (2005) Quantitative PCR analysis of two molluscan metallothionein genes unveils differential expression and regulation. Gene 345:259–270CrossRefGoogle Scholar
  8. Dunn MA, Blalock TL, Cousins RJ (1987) Metallothionein. Proc Soc Exp Biol Med 185:107–119Google Scholar
  9. Friberg L, Kjellstrom T, Nordberg GF (1986) Cadmium. In: Friberg L, Nordberg GF, Vouk V (eds) Handbook on the toxicology of metals. Elsevier, Amsterdam, pp 130–184Google Scholar
  10. Gunnarsson D, Nordberg G, Lundgren P, Selstam G (2003) Cadmium-induced decrement of the LH receptor expression and cAMP levels in the testis of rats. Toxicology 183:57–63CrossRefGoogle Scholar
  11. Jihen EH, Imed M, Fatima H, Abdelhamid K (2009) Protective effects of selenium (Se) and zinc (Zn) on cadmium (Cd) toxicity in the liver of the rat: effects on the oxidative stress. Ecotoxicol Environ Saf 72:1559–1564CrossRefGoogle Scholar
  12. Koga M, Tanaka H, Yomogida K, Tsuchida J, Uchida K, Kitamura M, Sakoda S, Matsumiya K, Okuyama A, Nishimune Y (1998) Expression of selenoprotein-P messenger ribonucleic acid in the rat testis. Biol Reprod 58:261–265CrossRefGoogle Scholar
  13. Lamphere DN, Dorn CR, Reddy CS, Meyer AW (1984) Reduced cadmium body burden in cadmium-exposed calves fed supplemental zinc. Environ Res 33(1):119–129CrossRefGoogle Scholar
  14. Li Q, Hu N, Daggett MA, Chu WA, Bittel D, Johnson JA, Andrews GK (1998) Participation of upstream stimulator factor (USF) in cadmium-induction of the mouse metallothionein-I gene. Nucleic Acids Res 26:5182–5189CrossRefGoogle Scholar
  15. Liu ZP (2003) Lead poisoning combined with cadmium in sheep and horses in the vicinity of nonferrous metal smelters. Sci Total Environ 309:117–126CrossRefGoogle Scholar
  16. Liu J, Qian SY, Guo Q, Jiang J, Waalkes MP, Mason RP, Kadiiska MB (2008) Cadmium generates reactive oxygen and carbon centred radical species in rats: in sights from in vivo spin-trapping studies. Free Radical Biol Med 45(4):475–481CrossRefGoogle Scholar
  17. Magos L (1991) Epidemiological and experimental aspects of metal carcinogenesis: physico-chemiological properties, kinetics, and the active species. Environ Health Perspect 95:157–189CrossRefGoogle Scholar
  18. Messaoudi I, El Heni J, Hammouda F, Saïd K, Kerkeni A (2009) Protective effects of selenium, zinc, or their combination on cadmium-induced oxidative stress in rat kidney. Biol Trace Element Res 130:152–161CrossRefGoogle Scholar
  19. Newairy AA, El-Sharaky AS, Badreldeen MM, Eweda SM, Sheweita SA (2007) The hepato-protective effects of selenium against cadmium toxicity in rats. Toxicology 242:23–30CrossRefGoogle Scholar
  20. Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acid Res 30(9):e36CrossRefGoogle Scholar
  21. Pfaffl MW, Gerstmayer B, Bosio A, Windisch W (2003) Effect of zinc deficiency on the mRNA expression pattern in liver and jejunum of adult rats: monitoring gene expression using cDNA microarrays combined with real-time RT-PCR. J Nutr Biochem 14:691–702CrossRefGoogle Scholar
  22. Quaife CJ, Findley SD, Erickson JC, Froelick GJ, Kelly EJ, Zambrowicz BP (1994) Induction of a new metallothionein isoform (MT-IV) occurs during differentiation of stratified squamous epithelia. Biochemistry 33:7250–7259CrossRefGoogle Scholar
  23. Reyes JG (1996) Zinc transport in mammalian cells. Am J Physiol 270:401–410Google Scholar
  24. Sadhu C, Gedamu L (1988) Regulation of human metallothionein (MT) genes. Differential expression of MTI-F, MTI-G, and MTII-A genes in the hepatoblastoma cell line (HepG2). J Biol Chem 263:2679–2684Google Scholar
  25. Sarkar S, Yadav P, Trivedi R, Bansal AK, Bhatnagar D (1995) Cadmium-induced lipid peroxidation and the status of the antioxidant system in rat tissues. J Trace Elements Med Biol 9(3):144–149Google Scholar
  26. Thiele DJ (1992) Metal regulated transcription in eukaryotes. Nucleic Acid Res 20:1183–1191CrossRefGoogle Scholar
  27. Thornalley PJ, Vasak M (1985) Possible role for metallothionein in protection against radiation-induced oxidative stress. Kinetics and mechanism of its reaction with superoxide and hydroxyl radicals. Biochim Biophys Acta 827:36–44Google Scholar
  28. Tohyama C, Satoh M, Kodama N, Nishimura H, Choo A, Michalska A, Kanayama Y, Naganuma A (1996) Reduced retention of cadmium in the liver of metallothionein-null mice. Environ Toxicol Pharmacol 1:213–216CrossRefGoogle Scholar
  29. Tom M, Chen N, Segev M, Herut B, Rinkevich B (2004) Quantifying fish metallothionein transcript by real time PCR for its utilization as an environmental biomarker. Marine Pollut Bull 48:705–710CrossRefGoogle Scholar
  30. Uchida M, Teranishi H, Aoshima K, Katoh T, Kasuya M, Inadera H (2004) Reduction of erythrocyte catalase and superoxide dismutase activities in male inhabitants of a cadmium polluted area in Jinzu river basin, Japan. Toxicol Lett 151(3):451–457CrossRefGoogle Scholar
  31. Ueda F, Seki H, Fujiwara H, Ebara K, Minomiya S, Shimaki Y (1987) Interacting effects of zinc and cadmium on the cadmium distribution in the mouse. Vet Hum Toxicol 29(5):367–372Google Scholar
  32. Vergani L, Lanza C, Scarabelli L, Canesi L, Gallo G (2009) Heavy metal and growth hormone pathways in metallothionein regulation in fish RTH-149 cell line. Comp Biochem Physiol C 149:572–580Google Scholar
  33. Viarengo A, Ponzano E, Dondero F, Fabbri R (1997) A simple spectrophotometric method for metallothionein evaluation in marine organisms: an application to Mediterranean and Antarctic molluscs. Marine Environ Res 44:69–84CrossRefGoogle Scholar
  34. Wan G, Cheuk WK, Chan KM (2009) Differential regulation of zebrafish metallothionein-II (zMT-II) gene transcription in ZFL and SJD cell lines by metal ions. Aquat Toxicol 91:33–43CrossRefGoogle Scholar
  35. Zhang S, Li J, Wang C, Tsou C (1999) Metal regulation of metallothionein participation in redox reactions. FEBS Lett 462:383–386CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Mohamed Banni
    • 1
    Email author
  • Imed Messaoudi
    • 2
  • Lamia Said
    • 2
  • Jihen El Heni
    • 3
  • Abdelhamid Kerkeni
    • 3
  • Khaled Said
    • 2
  1. 1.Laboratoire de Biochimie et Toxicologie de l’Environnement, ISASousseTunisie
  2. 2.Unité de Recherche: Génétique, Biodiversité et Valorisation des BioressourcesInstitut Supérieure de Biotechnologie de MonastirMonastirTunisie
  3. 3.Département de Biophysique, Faculté de Médecine de MonastirUnité de Recherche: Eléments Traces, Radicaux Libres, Antioxydants, Pathologies Humaines et EnvironnementMonastirTunisie

Personalised recommendations