Heavy Metal Accumulation in Lake Sediments, Fish (Oreochromis niloticus and Serranochromis thumbergi), and Crayfish (Cherax quadricarinatus) in Lake Itezhi-tezhi and Lake Kariba, Zambia

  • Shouta M. M. Nakayama
  • Yoshinori Ikenaka
  • Kaampwe Muzandu
  • Kennedy Choongo
  • Balazs Oroszlany
  • Hiroki Teraoka
  • Naoharu Mizuno
  • Mayumi Ishizuka
Article

Abstract

We measured the level of heavy metal accumulation in lake sediments, herbivorous (Oreochromis niloticus) and carnivorous (Serranochromis thumbergi) fish, and crayfish (Cherax quadricarinatus) from Lake Itezhi-tezhi (ITT) and Lake Kariba. We used atomic absorption spectrophotometry to quantify the levels of seven heavy metals (Cr, Co, Cu, Zn, Cd, Pb, and Ni). The sediment and the herbivorous fish O. niloticus accumulated a very high concentration of Cu in Lake ITT, most likely due to the discharge of Cu waste from a mining area 450 km upstream. The aquatic species we sampled in Lake Kariba had higher concentrations of Cr, Ni, and Pb relative to those in Lake ITT. This is most likely due to anthropogenic activities, such as the use of leaded petrol and antifouling agents in marine paints. Interestingly, we observed a negative correlation between the coefficient of condition (K) and Ni concentration in the crayfish hepatopancreas. Both O. niloticus and the crayfish had much higher biota-sediment accumulation factors (BSAF) for Cu, Zn, and Cd relative to Cr, Co, Pb, and Ni. The rank of BSAF values for O. niloticus (Cu > Cd > Zn) and C. quadricarinatus (Zn > Cd > Cu) differed from the expected ranks based on the general order of affinity of metals (Cd >> Zn > Cu).

Notes

Acknowledgment

This study was partly supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan awarded to M. Ishizuka (No. 19671001).

References

  1. Abdallah MAM, Abdallah AMA (2008) Biomonitoring study of heavy metals in biota and sediments in the South Eastern coast of Mediterranean sea, Egypt. Environ Monit Assess 146:139–145CrossRefGoogle Scholar
  2. Akiwumi FA, Butler DR (2008) Mining and environmental change in Sierra Leone, West Africa: a remote sensing and hydrogeomorphological study. Environ Monit Assess 142:309–318CrossRefGoogle Scholar
  3. Alcorlo P, Otero M, Crehuet M, Baltanás A, Montes C (2006) The use of the red swamp crayfish (Procambarus clarkii, Girard) as indicator of the bioavailability of heavy metals in environmental monitoring in the River Guadiamar (SW, Spain). Sci Total Environ 366:380–390CrossRefGoogle Scholar
  4. Allert AL, Fairchild JF, DiStefano RJ, Schmitt CJ, Brumbaugh WG, Besser JM (2008) Ecological effects of lead mining on Ozark streams: In situ toxicity to woodland crayfish (Orconectes hylas). Ecotoxicol Environ Saf 72:1207–1219CrossRefGoogle Scholar
  5. Alloway BJ (1990) Cadmium. In: Alloway BJ (ed) Heavy metals in soils. Blackie, Glasgow, pp 100–124Google Scholar
  6. Amundsen PA, Staldvik FJ, Lukin AA, Kashulin NA, Popova OA, Reshetnikov (1997) Heavy metal contamination in freshwater fish from the border region between Norway and Russia. Sci Total Environ 201:211–224CrossRefGoogle Scholar
  7. Anderson RV, Vinikour WS, Brower JE (1978) The distribution of Cd, Cu, Pb, and Zn in the biota of two freshwater sites with different trace metal inputs. Holarctic Ecol 1:377–384Google Scholar
  8. Andres S, Ribeyre F, Tourencq JN, Boudou A (2000) Interspecific comparison of cadmium and zinc contamination in the organs of four fish species along a polymetallic pollution gradient (Lot River, France). Sci Total Environ 248:11–25CrossRefGoogle Scholar
  9. Bagatto G, Alikhan MA (1987) Copper, cadmium, and nickel accumulation in crayfish populations near copper-nickel smelters at Sudbury, Ontario, Canada. Bull Environ Contam Toxicol 38:540–545CrossRefGoogle Scholar
  10. Basta NT, Tabatabai MA (1992) Effect of cropping systems on adsorption of metals by soils: II: effect of pH. Soil Sci 153:195–204CrossRefGoogle Scholar
  11. Berg H, Kibus M, Kautsky N (1995) Heavy metals in tropical lake Kariba, Zimbabwe. Water Air Soil Pollut 83:237–252CrossRefGoogle Scholar
  12. Besser JM, Brumbaugh WG, Allert AL, Poulton BC, Schmitt CJ, Ingersoll CG (2008) Ecological impacts of lead mining on Ozark streams: toxicity of sediment and pore water. Ecotoxicol Environ Saf 72:516–526CrossRefGoogle Scholar
  13. Birungi Z, Masola B, Zaranyika MF, Naigaga I, Marshall B (2007) Active biomonitoring of trace heavy metals using fish (Oreochromis niloticus) as bioindicator species. The case of Nakivubo wetland along Lake Victoria. Phys Chem Earth 32:1350–1358Google Scholar
  14. Bowen SH (1980) Detrital amino acids are the key to rapid growth of Tilapia in Lake Valencia, Venezuela. Science 207:1216–1218CrossRefGoogle Scholar
  15. Bryan GW (1964) Zinc regulation in the lobster Homarus vulgaris I. Tissue zinc and copper concentrations. J Marine Biol Assoc UK 44:549–563CrossRefGoogle Scholar
  16. Bryan GW (1967) Zinc regulation in the freshwater crayfish (including some comparative copper analyses). J Exp Biol 46:281–296Google Scholar
  17. Caliceti M, Argese E, Sfriso A, Pavoni B (2002) Heavy metal contamination in the seaweeds of the Venice lagoon. Chemosphere 47:443–454CrossRefGoogle Scholar
  18. Charlesworth SM, Lees JA (1999) The distribution of heavy metals in deposited urban dusts and sediments, Coventry, England. Environ Geochem Health 21:97–115CrossRefGoogle Scholar
  19. Choongo CK, Syakalima SM, Mwase M (2005) Coefficient of condition in relation to copper levels in muscle of serranochromis fish and sediment from the Kafue river, Zambia. Bull Environ Contam Toxicol 75:645–651CrossRefGoogle Scholar
  20. Coğun HY, Yüzereroğlu TA, Kargın F (2003) Accumulation of copper and cadmium in small and large nile tilapia Oreochromis niloticus. Bull Environ Contam Toxicol 71:1265–1271CrossRefGoogle Scholar
  21. Dai J, Becquer T, Rouiller JH, Reversat G, Bernhard-Reversat F, Nahmani J, Lavelle P (2004) Heavy metal accumulation by two earthworm species and its relationship to total and DTPA-extractable metals in soils. Soil Biol Biochem 36:91–98CrossRefGoogle Scholar
  22. Demirzen D, Uruc K (2006) Comparative study of trace elements in certain fish, meat and meat products. Meat Sci 74:255–260CrossRefGoogle Scholar
  23. Diagomanolin V, Farhang M, Ghazi-Khansari, Jafarzadeh N (2004) Heavy metals (Ni, Cr, Cu) in the Karoon waterway river, Iran. Toxicol Lett 151:63–68Google Scholar
  24. Falusi BA, Olanipekun EO (2007) Bioconcentration factors of heavy metals in tropical crab (Carcinus sp.) from River Aponwe, Ado-Ekiti, Nigeria. J Appl Sci Environ Manage 11:51–54Google Scholar
  25. Getachew T, Fernando CH (1989) The food habits of an herbivorous fish (Oreochromis niloticus Linn.) in Lake Awasa, Ethiopia. Hydrobiologia 174:195–200CrossRefGoogle Scholar
  26. Ikenaka Y, Eun H, Watanabe E, Kumon F, Miyabara Y (2005a) Estimation of sources and inflow of dioxins and polycyclic aromatic hydrocarbons from the sediment core of Lake Suwa, Japan. Environ Pollut 138:530–538CrossRefGoogle Scholar
  27. Ikenaka Y, Eun H, Watanabe E, Miyabara Y (2005b) Sources, distribution, and inflow pattern of dioxins in the bottom sediment of Lake Suwa, Japan. Bull Environ Contam Toxicol 75:915–921CrossRefGoogle Scholar
  28. Klaassen CD, Liu J, Choudhuri S (1999) Metallothionein: an intracellular protein to protect against cadmium toxicity. Annu Rev Pharmacol Toxicol 39:267–294CrossRefGoogle Scholar
  29. Lwanga MS, Kansiime F, Denny P, Scullion J (2003) Heavy metals in Lake George, Uganda, with relation to metal concentrations in tissues of common fish species. Hydrobiologia 499:83–93CrossRefGoogle Scholar
  30. Mackevičienė G (2002) Bioaccumulation of heavy metals in noble crayfish (Astacus astacus L.) tissues under aquaculture conditions. Ekologija 2:79–82Google Scholar
  31. Madamombe L (2002) The economic development of the Kapenta fishery lake Kariba (Zimbabwe/Zambia). Thesis, Norwegian College of Fishery Science, University of TromsoGoogle Scholar
  32. Mohapatra H, Gupta R (2005) Concurrent sorption of Zn(II), Cu(II) and Co(II) by Oscillatoria angustissima as a function of pH in binary and ternary metal solutions. Bioresour Technol 96:1387–1398CrossRefGoogle Scholar
  33. Morera MT, Echeverria JC, Mazkiaran C, Garrido JJ (2001) Isotherms and sequential extraction procedures for evaluating sorption and distribution of heavy metals in soils. Environ Pollut 113:135–144CrossRefGoogle Scholar
  34. Muohi AW, Onyari JM, Omondi JG, Mavuti KM (2003) Heavy metals in sediments from Makupa and Port-Reitz Creek systems: Kenyan Coast. Environ Int 28:619–647CrossRefGoogle Scholar
  35. Mwase M, Viktor T, Norrgren L (1998) Effects on tropical fish of soil sediments from Kafue River, Zambia. Bull Environ Contam Toxicol 61:96–101CrossRefGoogle Scholar
  36. Norrgren L, Pettersson U, Örn S, Bergqvist AP (2000) Environmental monitoring of the Kafue River, located in the Copperbelt, Zambia. Arch Environ Contam Toxicol 38:334–341CrossRefGoogle Scholar
  37. Pettersson UT, Ingri J (2001) The geochemistry of Co and Cu in Kafue River as it drains the Copperbelt mining area, Zambia. Chem Geol 177:399–414CrossRefGoogle Scholar
  38. Rincon-Leon F, Zurera-Cosano G, Pozo-Lora R (1988) Lead and cadmium concentrations in red crayfish (Procambarus clarkii. G.) in the Guadalquivir River Marshes (Spain). Arch Environ Contam Toxicol 17:251–256CrossRefGoogle Scholar
  39. Schwanck EJ (1995) The introduced Oreochromis niloticus is spreading on the Kaufe floodplain, Zambia. Hydrobiologia 315:143–147Google Scholar
  40. Seymore H, du Preez HH, van Vuren JHJ (1996) Concentrations of zinc in Barbus marequensis from the lower Olifants River, Mpumalanga, South Africa. Hydrobiologia 332:141–150CrossRefGoogle Scholar
  41. Shaw BJ, Handy RD (2006) Dietary copper exposure and recovery in Nile tilapia, Oreochromis niloticus. Aquat Toxicol 76:111–121CrossRefGoogle Scholar
  42. Skelton P (1993) A complete guide to the freshwater fishes of Southern Africa. Southern Book Publishers, Cape Town, South Africa, pp 311–318Google Scholar
  43. Stockwell LE, Hillier JA, Mills AJ, White R (2001) World mineral statistics 1995–99, Keyworth, Nottingham. British Geological Survey, Keyworth, UKGoogle Scholar
  44. Syakalima M, Choongo K, Nakazato Y, Onuma M, Sugimoto C, Tsubota T, Fukushi H, Yoshida M, Itagaki T, Yasuda J (2001) An investigation of heavy metal exposure and risks to wildlife in the Kafue Flats of Zambia. J Vet Med Sci 63:315–318CrossRefGoogle Scholar
  45. Utsugi K, Mazingaliwa K (2002) Field guide to Zambian fishes, planktons and aquaculture. Japan International Co-operation Agency (JICA), Tokyo, Japan, pp 41, 81–82Google Scholar
  46. WHO (World Health Organization) (1993) Evaluation of certain food additives and contaminants. Technical Report Series, 1993, No. 837. WHO, GenevaGoogle Scholar
  47. ZCCM (Zambia Consolidated Copper Mines Limited) (1982) A review of factors relevant to the reported incidence of cattle losses on farm bordering the Mwambashi River. MITS/PA/30/82. Zambia Consolidated Copper Mines Limited, ZambiaGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Shouta M. M. Nakayama
    • 1
  • Yoshinori Ikenaka
    • 1
  • Kaampwe Muzandu
    • 2
  • Kennedy Choongo
    • 2
  • Balazs Oroszlany
    • 1
  • Hiroki Teraoka
    • 3
  • Naoharu Mizuno
    • 3
  • Mayumi Ishizuka
    • 1
  1. 1.Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
  2. 2.Department of Biomedical Studies, School of Veterinary MedicineUniversity of ZambiaLusakaZambia
  3. 3.Department of Toxicology, School of Veterinary MedicineRakuno Gakuen UniversityEbetsuJapan

Personalised recommendations