Effect of Heavy Metals on Inhibition of Root Elongation in 23 Cultivars of Flax (Linum usitatissimum L.)

  • Petr Soudek
  • Adéla Katrušáková
  • Lukáš Sedláček
  • Šárka Petrová
  • Vladimír Kočí
  • Petr Maršík
  • Miroslav Griga
  • Tomáš Vaněk
Article

Abstract

The effect of toxic metals on seed germination was studied in 23 cultivars of flax (Linum usitatissimum L.). Toxicity of cadmium, cobalt, copper, zinc, nickel, lead, chromium, and arsenic at five different concentrations (0.01–1 mM) was tested by standard ecotoxicity test. Root length was measured after 72 h of incubation. Elongation inhibition, EC50 value, slope, and NOEC values were calculated. Results were evaluated by principal component analysis, a multidimensional statistical method. The results showed that heavy-metal toxicity decreased in the following order: As3+ ≥ As5+ > Cu2+ > Cd2+ > Co2+ > Cr6+ > Ni2+ > Pb2+ > Cr3+ > Zn2+.

References

  1. Acero P, Mandado JMA, Gomez J, Gimeno M, Auque L, Torrijo F (2003) Environmental impact of heavy metal dispersion in the Huerva River (Iberian range, NE Spain). Environ Geol 43:950–956Google Scholar
  2. Arduini I, Godbold DL, Onnis A (1994) Cadmium and copper change root growth and morphology of Pinus pinea and Pinus pinaster seedlings. Physiol Plantarum 92:675–680CrossRefGoogle Scholar
  3. Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements―A review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126Google Scholar
  4. Blažek O, Bjelková M, Tejklová E, Griga M (2003) The methods to the study of phytoremediation on flax, in MendelNet 03’―Postgradual students conference. Mendel University of Agriculture and Forestry, Brno, Czech Republic (23rd November 2003). Available at: http://old.mendelu.cz/~agro/af/mendelnet2003/obsahy/fyto/blazek.pdf. Accessed 12 January 2009
  5. Carbonell AK, Aarabi MA, Delaune RD, Gambrell RP, Patrick WH (1998) Bioavailability and uptake of arsenic by wetland vegetation―Effects on plant growth and nutrition. J Environ Sci Health A Environ Sci Eng Toxic Hazard Subst Control 33:45–66Google Scholar
  6. Carlson CL, Adriano DC, Sajwan KS, Abels SL, Thoma DP, Driver JT (1991) Effects of selected trace metals on germinating seeds of six plant species. Water Air Soil Pollut 59:231–240CrossRefGoogle Scholar
  7. Fargašová A (1998) Root growth inhibition, photosynthetic pigments production, and metal accumulation in Sinapis alba as the parameters for trace metals effects determination. Bull Environ Contam Toxicol 61:762–769CrossRefGoogle Scholar
  8. Fargašová A (1999) Determination of metal interactions on root growth of Sinapis alba seedlings. Biol Plantarum 42:637–640CrossRefGoogle Scholar
  9. Fargašová A (2001) Phytotoxic effects of Cd, Zn, Pd, Cu, and Fe on Sinapis alba L. seedlings and their accumulation in roots and shoots. Biol Plantarum 44:471–473CrossRefGoogle Scholar
  10. Fargašová A, Beinrohr E (1998) Metal-metal interaction in accumulation of V5+, Ni2+, Mo6+, Mn2+ and Cu2+ in under- and above-ground parts of Sinapis alba. Chemosphere 36:1305–1317CrossRefGoogle Scholar
  11. Fernandes JC, Henriques FS (1991) Biochemical, physiological, and structural effects of excess copper in plants. Bot Rev 57:246–273CrossRefGoogle Scholar
  12. Hartley-Whitaker J, Ainsworth G, Meharg AA (2001) Copper- and arsenate-induced oxidative stress in Holcus lanatus L. clones with differential sensitivity. Plant Cell Environ 24:713–722CrossRefGoogle Scholar
  13. Holm-Hansen O, Gerloff GC, Skoog F (1954) Cobalt as an essential element for blue-green algae. Physiol Plantarum 7:665–675CrossRefGoogle Scholar
  14. Kafka Z, Punčochářová J (2002) Těžké kovy v přírodě a jejich toxicita. Chemické Listy 96:611–617Google Scholar
  15. Liu J, Reid RJ, Smith FA (2000) The mechanism of cobalt toxicity in mung beans. Physiol Plantarum 110:104–110CrossRefGoogle Scholar
  16. Llorens N, Arola L, Blade C, Mas A (2000) Effects of copper exposure upon nitrogen metabolism in tissue cultured Vitis vinifera. Plant Sci 160:159–163CrossRefGoogle Scholar
  17. Lowe RH, Evans HJ (1962) Cobalt requirement for the growth of Rhizobia. J Bacteriol 83:210–211Google Scholar
  18. Marin AR, Masscheleyn PH, Patrick WH Jr (1992) The influence of chemical form and concentration of arsenic on rice growth and tissue arsenic concentration. Plant Soil 139:175–183CrossRefGoogle Scholar
  19. Munzuroglu O, Geckil H (2002) Effects of metals on seed germination, root elongation, and coleoptile and hypocotyl growth in Triticum aestivum and Cucumis sativus. Arch Environ Contam Toxicol 43:203–213CrossRefGoogle Scholar
  20. Öncel I, Keles Y, Üstün AS (2000) Interactive effects of temperature and heavy metal stress on the growth and some biochemical compounds in wheat seedlings. Environ Pollut 107:315–320CrossRefGoogle Scholar
  21. Ouariti O, Boussama N, Zarrouk M, Cherif A, Ghorbal MH (1997) Cadmium- and copper-induced changes in tomato membrane lipids. Phytochemistry 45:1343–1350CrossRefGoogle Scholar
  22. Peralta JR, Gardea-Torresdey JL, Tiemann KJ, Gomez E, Arteaga S, Rascon E et al (2001) Uptake and effects of five heavy metals on seed germination and plant growth in alfalfa (Medicago sativa L.). Bull Environ Contam Toxicol 66:727–734Google Scholar
  23. Saether OM, Krog R, Segar D, Storroe G (1997) Contamination of soil and ground water at former industrial site in Trondheim, Norway. Appl Geochem 12:327–332CrossRefGoogle Scholar
  24. Shu WS, Ye ZH, Lan CY, Zhang ZQ, Wong MH (2002) Lead, zinc and copper accumulation and tolerance in populations of Paspalum distichum and Cynodon dactylon. Environ Pollut 120:445–453CrossRefGoogle Scholar
  25. Theil EC, Raymond KN (1994) Transition-metal storage, transport and biomineralization. In: Bertini I, Gray HB, Lippard SJ, Valentine JS (eds) Bioinorganic chemistry. University Science Books, Sausalito, CA, pp 1–35Google Scholar
  26. Wierzbicka M, Obidzinska J (1998) The effect of lead on seed imbibition and germination in different plant species. Plant Sci 137:155–171CrossRefGoogle Scholar
  27. Xiong Z-T (1998) Lead uptake and effects on seed germination and plant growth in a Pb hyperaccumulator Brassica pekinensis Rupr. Bull Environ Contam Toxicol 60:285–291CrossRefGoogle Scholar
  28. Zeid IM (2001) Responses of Phaseolus vulgaris chromium and cobalt treatments. Biol Plantarum 44:111–115CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Petr Soudek
    • 1
  • Adéla Katrušáková
    • 1
    • 2
  • Lukáš Sedláček
    • 1
    • 3
  • Šárka Petrová
    • 1
  • Vladimír Kočí
    • 2
  • Petr Maršík
    • 1
  • Miroslav Griga
    • 4
  • Tomáš Vaněk
    • 1
  1. 1.Laboratory of Plant BiotechnologiesJoint Laboratory of the Institute of Experimental Botany AS CR, v.v.i., and Crop Research Institute, v.v.i.Prague 6Czech Republic
  2. 2.Faculty of Environment TechnologyInstitute of Chemical TechnologyPrague 6Czech Republic
  3. 3.Faculty of ScienceCharles University in PraguePraha 2Czech Republic
  4. 4.Plant Biotechnology DepartmentAgritec Ltd.ŠumperkCzech Republic

Personalised recommendations