Herbicide Formulation with Glyphosate Affects Growth, Acetylcholinesterase Activity, and Metabolic and Hematological Parameters in Piava (Leporinus obtusidens)

  • Joseânia Salbego
  • Alexandra Pretto
  • Carolina Rosa Gioda
  • Charlene Cavalheiro de Menezes
  • Rafael Lazzari
  • João Radünz Neto
  • Bernardo BaldisserottoEmail author
  • Vania Lucia Loro


The teleost fish Leporinus obtusidens (piava) was exposed to different concentrations of Roundup, a commercial herbicide formulation containing glyphosate (0, 1, or 5 mg L−1), for 90 days. Acetylcholinesterase (AChE) activity was verified in brain and muscle. Hepatic and muscular metabolic parameters as well as some hematological parameters were determined. The results showed that brain AChE activity was significantly decreased in fish exposed to 5 mg L−1 Roundup, whereas muscular AChE activity was not altered. Both Roundup concentrations significantly decreased liver glycogen without altering the muscle glycogen content. Hepatic glucose levels were reduced only in fish exposed to 5 mg L−1 Roundup. Lactate levels in the liver and muscle significantly increased in fish exposed to both Roundup concentrations. Hepatic protein content remained constant at 1 mg L−1 but increased at 5 mg L−1 Roundup. In the muscle however, protein content decreased with increasing exposure concentration. The herbicide exposure produced a decrease in hematological parameters at both concentrations tested. The majority of observed effects occur at environmental relevant concentrations, and in summary, the results show that Roundup affects brain AChE activity as well as metabolic and hematologic parameters of piavas. Thus, we can suggest that long-term exposure to Roundup causes metabolic disruption in Leporinus obtusidens.


Glyphosate AChE Activity Hematological Parameter Roundup Brain AChE 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was supported by Fundação de Amparo à Pesquisa no Rio Grande do Sul, process number 040546.0. B. Baldisserotto and V. L. Loro received research fellowships from the CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil).


  1. Andrian IF, Dória CC, Torrente G, Ferreti CML (1994) Espectro alimentar e similaridade na composição de quatro espécies de Leporinus (Characiformes, Anostomidae) do Rio Paraná, Brasil. Revista Unimar 16(Suppl 3):97–106Google Scholar
  2. Barcellos LJG, Kreutz LC, Rodrigues LB, Quevedo RM, Fioreze I, Cericato L, Soso AB, Fagundes M, Lacerda LA, Terra S (2003) Haematological and biochemical characteristics of male jundiá, Rhamdia quelen (Quoy & Gaimard): changes after acute stress. Aquacult Res 34:1465–1469CrossRefGoogle Scholar
  3. Begum G (2004) Carbofuran insecticide induced biochemical alterations in liver and muscle tissues of the fish Clarias batrachus (Linn) and recovery response. Aquat Toxicol 66:83–92CrossRefGoogle Scholar
  4. Bidinotto PM, Souza RHS, Moraes G (1997) Hepatic glycogen and glucose in eight tropical freshwater teleost fish: a procedure for field determinations of micro samples. Bol Tec CEPTA 10:53–60Google Scholar
  5. Bradford MMA (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  6. Bretaud S, Toutant JP, Saglio P (2000) Effects of carbofuran, diuron and nicosulfuron on acetylcholinesterase activity in goldfish (Carassius auratus). Ecotoxicol Environ Saf 47:117–124CrossRefGoogle Scholar
  7. Cavalcante DGSM, Martinez CBR, Sofia SH (2008) Genotoxic effects of Roundup (R) on the fish Prochilodus lineatus. Mutat Res-Genet Toxicol Environ 655:41–46CrossRefGoogle Scholar
  8. Cericato L, Machado JG, Fagundes M, Kreutz LC, Quevedo RM, Finco J, Rosa JGS, Koakoski G, Centenaro L, Pottker E, Anziliero D, Barcellos LJG (2008) Cortisol response to acute stress in jundia Rhamdia quelen acutely exposed to sub-lethal concentrations of agrichemicals. Comp Biochem Phys C 148:281–286Google Scholar
  9. Chuiko GM (2000) Comparative study of acetylcholinesterase and butyrilcholinesterase in brain and serum of several freshwater fish: specific activities and in vitro inhibition by DDVP, an organophosphorus pesticide. Comp Biochem Physiol 127:233–242Google Scholar
  10. Contardo-Jara V (2009) Bioaccumulation of glyphosate and its formulation Roundup Ultra in Lumbriculus variegatus and its effects on biotransformation and antioxidant enzymes. Environ Poll 157:57–63CrossRefGoogle Scholar
  11. Dutta HM, Arends DA (2003) Effects of endosulfan on brain acetylcholinesterase activity in juvenile bluegill sunfish. Environ Res 91:157–162CrossRefGoogle Scholar
  12. Ellman GL, Courtney KD, Andres V Jr, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95CrossRefGoogle Scholar
  13. Fernández-Vega C, Sancho E, Ferrando MD, Andreu E (2002) Thiobencarbinduced changes in acetylcholinesterase activity of the fish Anguilla anguilla. Pest Biochem Physiol 72:55–63CrossRefGoogle Scholar
  14. Giesy JP, Dobson S, Solomon KR (2000) Ecotoxicological risk assessment for Roundup herbicide. Rev Environ Contam Toxicol 167:35–120Google Scholar
  15. Glusczak L, Miron DS, Crestani M, Fonseca MB, Pedron FA, Duarte MF, Vieira VLP (2006) Effect of glyphosate herbicide on acetylcholinesterase activity, metabolic and hematological parameters in piava (Leporinus obtusidens). Ecotoxicol Environ Saf 65:237–241CrossRefGoogle Scholar
  16. Glusczak L, Miron DS, Moraes BS, Simoes RR, Schetinger MRC, Morsch VM, Loro VL (2007) Acute effects of glyphosate herbicide on metabolic and enzymatic parameters of silver catfish (Rhamdia quelen). Comp Biochem Phys C 146:519–524Google Scholar
  17. Harrower JR, Brown CH (1972) Blood lactic acid. A micromethod adapted to field collection of microliter samples. J Appl Physiol 32:709–711Google Scholar
  18. Hidalgo C, Rios C, Hidalgo M, Salvado V, Sancho JV, Hernández F (2004) Improved coupled-columm liquid chromatographic method for the determination of glyphosate and aminomethylphosphonic acid residues in environmental waters. J Chromatogr 1035(A):153–157CrossRefGoogle Scholar
  19. Jeffery GH, Basset J, Medham J, Denney RC (1992) Vogel Análise Química Quantitativa, 5th edn. Guanabara Koogan, Rio de JaneiroGoogle Scholar
  20. Jiraungkoorskul W, Upatham ES, Kruatrachue M, Sahaphong S, Vichasri-Grams S, Pokethitiyook P (2002) Histopathological effects of Roundup, a glyphosate herbicide, on Nile tilapia (Oreochromis niloticus). Sci Asia 28:121–127CrossRefGoogle Scholar
  21. Jobling M (1994) Fish bioenergetics. Chapman & Hall, LondonGoogle Scholar
  22. Langiano VD, Martinez CBR (2008) Toxicity and effects of a glyphosate-based herbicide on the neotropical fish Prochilodus lineatus. Comp Biochem Phys C 147:222–231Google Scholar
  23. Lowry DH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with folin phenol reagent. J Biol Chem 193:265–275Google Scholar
  24. Miron DS, Crestani M, Shettinger MR, Morsch VM, Baldisserotto B, Tierno MA, Moraes G, Vieira VLP (2005) Effects of herbicides clomazone, quinclorac, and metsulfuron methyl on acethylcholinesterase activity in the silver catfish (Rhamdia quelen) (Heptapteridae). Ecotoxicol Environ Saf 61:398–403CrossRefGoogle Scholar
  25. Moraes BS, Glusczak L, Pretto A, Menezes C, Marchezan E, Machado SO, Loro VL (2007) Effects of four rice herbicides on some metabolic and toxicology parameters of teleost fish (Leporinus obtusidens). Chemosphere 68:1597–1601CrossRefGoogle Scholar
  26. Moraes BS, Loro VL, Pretto A, Fonseca MB, Menezes C, Marchezan E, Reimche GB, Avila LA (2009) Toxicological and metabolic parameters of the teleost fish (Leporinus obtusidens) in response to commercial herbicides containing clomazone and propanil. Pestic Biochem Physiol 95:57–62CrossRefGoogle Scholar
  27. Park JT, Johnson MJ (1949) A submicro determination of glucose. J Biol Chem 181:149–151Google Scholar
  28. Piper GR, McElwain IB, Orme LE, McCraren JP, Fowler LG, Leonard JR (1982) Fish hatchery management. U.S. Department of the Interior, Fish and Wildlife Service, Washington, DCGoogle Scholar
  29. Rendón-von Osten J, Ortiz-Arana A, Guilhermino L, Soares AMVM (2005) In vivo evaluation of three biomarkers in the mosquitofish (Gambusia yucatana) exposed to pesticides. Chemosphere 58:627–636CrossRefGoogle Scholar
  30. Rodrigues BN, Almeida FS (1998) Guia de Herbicidas, 4th edn. Agris, LondrinaGoogle Scholar
  31. Saglio P, Trijasse S (1998) Behavioral responses to atrazine and diuron in goldfish. Arch Environ Contam Toxicol 35:484–491CrossRefGoogle Scholar
  32. Sancho E, Ferrando MD, Andreu E (1997) Sublethal effects of an organophosphate insecticide on the European eel, Anguilla anguilla. Ecotoxicol Environ Saf 36:57–65CrossRefGoogle Scholar
  33. Sancho E, Ferrando MD, Fernández C, Andreu E (1998) Liver energy metabolism of Anguilla anguilla after exposure to fenitrothion. Ecotoxicol Environ Saf 41:168–175CrossRefGoogle Scholar
  34. Sancho E, Cerón JJ, Ferrando MD (2000) Cholinesterase activity and hematological parameters as biomarkers of sublethal molinate exposure in Anguilla anguilla. Ecotoxicol Environ Saf 46:81–86CrossRefGoogle Scholar
  35. Sipauba-Tavares LH (1994) Limnologia aplicada a aquicultura. Boletim Técnico 1, FUNEP, JaboticabalGoogle Scholar
  36. Soso AB, Barcellos LJG, Ranzani-Paiva MJ, Kreutz LC, Quevedo RM, Anziliero D, Lima M, Silva LB, Ritter F, Bedin AC, Finco JA (2007) Chronic exposure to sub-lethal concentration of a glyphosate-based herbicide alters hormone profiles and affects reproduction of female jundia (Rhamdia quelen). Environ Toxicol Phar 23:308–313CrossRefGoogle Scholar
  37. Tajate DR, Zaniboni Filho E (2005) Cultivo do gênero Leporinus. In: Baldisserotto B, Gomes LC (eds) Espécies Nativas Para Piscicultura no Brasil. Editora da Universidade Federal de Santa Maria, Santa Maria, pp 81–103Google Scholar
  38. Tsui MTK, Chu LM (2008) Environmental fate and non-target impact of glyphosate-based herbicide (Roundup) in a subtropical wetland. Chemosphere 71:439–446CrossRefGoogle Scholar
  39. Villescas R, Oswald R, Marimoto H (1981) Effects of neonatal undernutrition and cold stress on behavior and biochemical brain parameters in rats. J Nutr 111:1103–1110Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Joseânia Salbego
    • 1
  • Alexandra Pretto
    • 2
  • Carolina Rosa Gioda
    • 2
  • Charlene Cavalheiro de Menezes
    • 2
  • Rafael Lazzari
    • 3
  • João Radünz Neto
    • 4
  • Bernardo Baldisserotto
    • 1
    Email author
  • Vania Lucia Loro
    • 2
  1. 1.Departamento de Fisiologia e FarmacologiaUniversidade Federal de Santa MariaSanta MariaBrazil
  2. 2.Departamento de QuímicaUniversidade Federal de Santa MariaSanta MariaBrazil
  3. 3.CESNORS—Centro de Educação Superior NorteUniversidade Federal de Santa MariaPalmeira das MissõesBrazil
  4. 4.Departamento de ZootecniaUniversidade Federal de Santa MariaSanta MariaBrazil

Personalised recommendations