Levels and Sources of PAHs in Selected Sites from Portugal: Biomonitoring with Pinus pinea and Pinus pinaster Needles

  • Nuno Ratola
  • José Manuel Amigo
  • Arminda AlvesEmail author


Pine needle samples from two pine species (Pinus pinaster Ait. and Pinus pinea L.) were collected at 29 sites scattered throughout Portugal, in order to biomonitor the levels and trends of 16 polycyclic aromatic hydrocarbons (PAHs). The values obtained for the sum of all PAHs ranged from 76 to 1944 ng/g [dry weight (dw)]. Despite the apparent matrix similarities between both pine species, P. pinaster needles revealed higher mean entrapment levels than P. pinea (748 and 399 ng/g (dw) per site, respectively). The urban and industrial sites have the highest average of PAH incidence [for P. pinea, 465 and 433 ng/g (dw) per site, respectively, and for P. pinaster, 1147 and 915 ng/g (dw)], followed by the rural sites [233 ng/g and 711 ng/g (dw) per site, for P. pinea and P. pinaster, respectively]. The remote sites, both from P. pinaster needles, show the least contamination, with 77 ng/g (dw) per site. A predominance of 3-ring and 4-ring PAHs was observed in most samples, with phenanthrene having 30.1% of the total. Naphthalene prevailed in remote sites. Rainfall had no influence on the PAHs levels, but there was a relationship between higher wind speeds and lower concentrations. PAH molecular ratios revealed the influence of both petrogenic and pyrogenic sources.


PAHs Phen Site Type Rural Site Remote Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to thank Fundação para a Ciência e a Tecnologia (Portugal) for the scholarship SFRH/BD/11970/2002 and the project PTDC-AGR-CFL-73156/06. Dr. Olga Ferreira is thanked for her collaboration in the collection of the samples.


  1. Alfani A, De Nicola F, Maisto G, Prati MV (2005) Long-term PAH accumulation after bud break in Quercus ilex L. leaves in a polluted environment. Atmos Environ 39:307–314CrossRefGoogle Scholar
  2. Alves C, Pio C, Duarte A (2001) Composition of extractable organic matter of air particles from rural and urban Portuguese areas. Atmos Environ 35:5485–5496CrossRefGoogle Scholar
  3. Baek SO, Field RA, Goldstone ME, Kirk PW, Lester JN, Perry R (1991) A review of atmospheric polycyclic aromatic hydrocarbons: sources, fate and behaviour. Water Air Soil Pollut 60:279–300CrossRefGoogle Scholar
  4. Barreira LA, Mudge SM, Bebianno MJ (2007) Concentration and sources of polycyclic aromatic hydrocarbons in sediments from the Ria Formosa Lagoon. Environ Forensics 3:231–243CrossRefGoogle Scholar
  5. Baumard P, Budzinski H, Garrigues P (1998) Polycyclic aromatic hydrocarbons in sediments and mussels of the western Mediterranean Sea. Environ Toxicol Chem 17:765–776CrossRefGoogle Scholar
  6. Blasco M, Domeño C, Nerín C (2006) Use of lichens as pollution biomonitors in remote areas: comparison of PAHs extracted from lichens and atmospheric particles sampled in and around the Somport tunnel (Pyrenees). Environ Sci Technol 40:6384–6391CrossRefGoogle Scholar
  7. Brorström-Lundén E, Löfgren C (1998) Atmospheric fluxes of persistent semivolatile organic pollutants to a forest ecological system at the Swedish west coast and accumulation in spruce needles. Environ Pollut 102:139–149CrossRefGoogle Scholar
  8. Cheng CC (2003) Recovery of polycyclic aromatic hydrocarbons during solvent evaporation with a rotary evaporator. Polycyclic Aromat Compd 32:315–325CrossRefGoogle Scholar
  9. De Nicola F, Maisto G, Prati MV, Alfani A (2008) Leaf accumulation of trace elements and polycyclic aromatic hydrocarbons (PAHs) in Quercus ilex L. Environ Pollut 153:376–383CrossRefGoogle Scholar
  10. DGF (Direcção-Geral das Florestas) Ministério da Agricultura (1998) Inventário florestal nacional. Portugal continental–3ª Revisão:1995–1998. Direcção-Geral das Florestas, LisboaGoogle Scholar
  11. Fernández P, Vilanova RM, Grimalt JO (1999) Sediment fluxes of polycyclic aromatic hydrocarbons in European high altitude mountain lakes. Environ Sci Technol 33:3716–3722CrossRefGoogle Scholar
  12. Guidotti M, Stella D, Owczarek M, De Marco A, De Simone C (2003) Lichens as polycyclic aromatic hydrocarbon bioaccumulators used in atmospheric pollution studies. J Chromatogr A 985:185–190CrossRefGoogle Scholar
  13. Herbert P, Silva AL, João MJ, Santos L, Alves A (2006) Determination of semi-volatile priority pollutants in landfill leachates and sediments using microwave-assisted headspace solid-phase microextraction. Anal Bioanal Chem 386:324–331CrossRefGoogle Scholar
  14. Horstmann M, McLachlan MS (1998) Atmospheric deposition of semivolatile organic compounds to two forest canopies. Atmos Environ 32:1799–1809CrossRefGoogle Scholar
  15. Howsam M, Jones KC, Ineson P (2001) PAHs associated with the leaves of three deciduous tree species. II: uptake during a growing season. Chemosphere 44:155–164CrossRefGoogle Scholar
  16. Hwang HH, Wade TL (2008) Aerial distribution temperature-dependent seasonal variation and sources of polycyclic aromatic hydrocarbons in pine needles from the Houston metropolitan area Texas USA. J Environ Sci Health A 43:1243–1251CrossRefGoogle Scholar
  17. Hwang HH, Wade TL, Sericano JL (2003) Concentrations and source characterization of polycyclic aromatic hydrocarbons in pine needles from Korea, Mexico and United States. Atmos Environ 37:2259–2267CrossRefGoogle Scholar
  18. INE (Instituto Nacional de Estatística—Statistics Portugal) (2009) Assessed 25 May 2009
  19. Jacob J (1996) The significance of polycyclic aromatic hydrocarbons as environmental carcinogens. Pure Appl Chem 68:301–308CrossRefGoogle Scholar
  20. Jaward FM, Farrar NJ, Harner T, Sweetman AJ, Jones KC (2004) Passive air sampling of polycyclic aromatic hydrocarbons and polychlorinated naphthalenes across Europe. Environ Toxicol Chem 23:1355–1364CrossRefGoogle Scholar
  21. Khalili NR, Scheff PA, Holsen TM (1995) PAH source fingerprints for coke ovens diesel and gasoline engines highway tunnels and wood combustion emissions. Atmos Environ 29:533–542CrossRefGoogle Scholar
  22. Lage-Yusty MA, Alvarez-Pérez S, Punín-Crespo MO (2009) Supercritical fluid extraction of polycyclic aromatic hydrocarbons from seaweed samples before and after the Prestige oil spill. Bull Environ Contam Toxicol 82:158–161CrossRefGoogle Scholar
  23. Lang Q, Hunt F, Wai CM (2000) Supercritical fluid extraction of polycyclic aromatic hydrocarbons from white pine (Pinus strobus) needles and its implications. J Environ Monit 2:639–644CrossRefGoogle Scholar
  24. Lapviboonsuk J, Loganathan BG (2007) Polynuclear aromatic hydrocarbons in sediments and mussel tissue from the lowermost Tennessee River and Kentucky Lake. J KY Acad Sci 68:186–197CrossRefGoogle Scholar
  25. Lee RGM, Coleman P, Jones JL (2005) Emission factors and importance of PCDD/Fs PCBs PCNs PAHs and PM10 from the domestic burning of coal and wood in the UK. Environ Sci Technol 39:1436–1447CrossRefGoogle Scholar
  26. Lehndorff E, Schwark L (2004) Biomonitoring of air quality in the Cologne Conurbation using pine needles as a passive sampler—part II: polycyclic aromatic hydrocarbons (PAH). Atmos Environ 38:3793–3808CrossRefGoogle Scholar
  27. Lehndorff E, Schwark L (2009a) Biomonitoring airborne parent and alkylated three-ring PAHs in the Greater Cologne Conurbation I: temporal accumulation patterns. Environ Pollut 157:1323–1331CrossRefGoogle Scholar
  28. Lehndorff E, Schwark L (2009b) Biomonitoring airborne parent and alkylated three-ring PAHs in the Greater Cologne Conurbation II: regional distribution patterns. Environ Pollut 157:1706–1713CrossRefGoogle Scholar
  29. Librando V, Perrini G, Tomasello M (2002) Biomonitoring of atmospheric PAHs by evergreen plants: correlations and applicability. Polycyclic Aromat Compd 22:549–559CrossRefGoogle Scholar
  30. Lima I, Moreira SM, Osten JRV, Soares AMVM, Guilhermino L (2007) Biochemical responses of the marine mussel Mytilus galloprovincialis to petrochemical environmental contamination along the North-western coast of Portugal. Chemosphere 66:1230–1242CrossRefGoogle Scholar
  31. Liu GQ, Zhang G, Li J, Li XD, Peng XZ, Qi SH (2006) Spatial distribution and seasonal variations of polycyclic aromatic hydrocarbons (PAHs) using semi-permeable membrane devices (SPMD) and pine needles in the Pearl River Delta South China. Atmos Environ 40:3134–3143CrossRefGoogle Scholar
  32. Loganathan BG, Kumar KS, Seaford KD, Sajwan KS, Hanari N, Yamashita N (2008) Distribution of persistent organohalogen compounds in pine needles from selected locations in Kentucky and Georgia, USA. Arch Environ Contam Toxicol 54:422–439CrossRefGoogle Scholar
  33. Marr LC, Kirchstetter TW, Harley RA, Miguel AH, Hering SV, Hammond SK (1999) Characterization of polycyclic aromatic hydrocarbons in motor vehicle fuels and exhaust emissions. Environ Sci Technol 33:3091–3099CrossRefGoogle Scholar
  34. Martínez E, Gros M, Lacorte S, Barceló D (2004) Simplified procedures for the analysis of polycyclic aromatic hydrocarbons in water sediments and mussels. J Chromatogr A 1047:181–188Google Scholar
  35. Masclet P, Bresson MA, Mouvier G (1987) Polycyclic aromatic hydrocarbons emitted by power stations and influence of combustion conditions. Fuel 66:556–562CrossRefGoogle Scholar
  36. Migaszewski ZM, Gałuszka A, Pasławski P (2002) Polynuclear aromatic hydrocarbons phenols and trace metals in selected soil profiles and plant bioindicators in the Holy Cross Mountains South-Central Poland. Environ Int 28:303–313CrossRefGoogle Scholar
  37. Mumtaz M, George J (1995) Toxicological profile for polycyclic aromatic hydrocarbons (PAHs). US Department of Human and Health Services. Agency for Toxic Substances and Disease Registry, Atlanta, GAGoogle Scholar
  38. Niu J, Chen J, Martens D, Quan X, Yang F, Kettrup A, Schramm K-W (2003) Photolysis of polycyclic aromatic hydrocarbons adsorbed on spruce [Picea abies (L.) Karst.] needles under sunlight irradiation. Environ Pollut 123:39–45CrossRefGoogle Scholar
  39. Oliveira C, Pio C, Alves C, Evtyugina M, Santos P, Gonçalves V, Nunes T, Silvestre AJ, Palmgren F, Wahlin P, Harrad S (2007) Seasonal distribution of polar organic compounds in the urban atmosphere of two large cities from the North and South of Europe. Atmos Environ 41:5555–5570CrossRefGoogle Scholar
  40. Orecchio S, Gianguzza A, Culotta L (2008) Absorption of polycyclic aromatic hydrocarbons by Pinus bark: analytical method and use for environmental pollution monitoring in the Palermo area (Sicily Italy). Environ Res 107:371–379CrossRefGoogle Scholar
  41. Pacheco M, Santos MA, Teles M, Oliveira M, Rebelo JE, Pombo L (2005) Biotransformation and genotoxic biomarkers in mullet species (Liza sp.) from a contaminated coastal lagoon (Ria de Aveiro Portugal). Environ Monit Assess 107:133–153CrossRefGoogle Scholar
  42. Piccardo MT, Pala M, Bonaccurso B, Stella A, Redaelli A, Paola G, Valério F (2005) Pinus nigra and Pinus pinaster needles as passive samplers of polycyclic aromatic hydrocarbons. Environ Pollut 133:293–301CrossRefGoogle Scholar
  43. Piñeiro-Iglesias M, López-Mahía P, Vázquez-Blanco E, Muniategui-Lorenzo S, Prada-Rodríguez D (2002) Problems in the extraction of polycyclic aromatic hydrocarbons from diesel particulate matter. Polycyclic Aromat Compd 22:129–146CrossRefGoogle Scholar
  44. Preuss R, Angerer J, Drexler H (2003) Naphthalene—an environmental and occupational toxicant. Int Arch Occup Environ Health 76:556–576CrossRefGoogle Scholar
  45. Ratola N, Lacorte S, Alves A, Barceló D (2006) Analysis of polycyclic aromatic hydrocarbons in pine needles by gas chromatography mass spectrometry: comparison of different extraction and clean-up procedures. J Chromatogr A 1114:198–204CrossRefGoogle Scholar
  46. Ratola N, Lacorte S, Barceló D, Alves A (2009) Microwave-assisted extraction and ultrasonic extraction to determine polycyclic aromatic hydrocarbons in needles and bark of Pinus pinaster. Ait and Pinus pinea L. by GC-MS. Talanta 77:1120–1128CrossRefGoogle Scholar
  47. Ravindra K, Sokhi R, Van Grieken R (2008) Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmos Environ 42:2895–2921CrossRefGoogle Scholar
  48. Rocha TAP, Horvath H, Oliveira JABP, Duarte AC (1999) Trends in alkanes and PAHs in airborne particulate matter from Oporto and Vienna: identification and comparison. Sci Total Environ 236:231–236CrossRefGoogle Scholar
  49. Serafim A, Lopes B, Company R, Ferreira AM, Bebianno MJ (2008) Comparative petroleum hydrocarbons levels and biochemical responses in mussels from hydrothermal vents (Bathymodiolus azoricus) and coastal environments (Mytilus galloprovincialis). Marine Pollut Bull 57:529–537CrossRefGoogle Scholar
  50. Simonich SL, Hites RA (1995) Organic pollutant accumulation in vegetation. Environ Sci Technol 29:2095–2103CrossRefGoogle Scholar
  51. Singh KP, Malik A, Kumar R, Saxena P, Sinha S (2008) Receptor modelling for source apportionment of polycyclic aromatic hydrocarbons in urban atmosphere. Environ Monit Assess 136:183–196CrossRefGoogle Scholar
  52. Smith KEC, Jones KC (2000) Particles and vegetation: implications for the transfer of particle-bound organic contaminants to vegetation. Sci Total Environ 246:207–236CrossRefGoogle Scholar
  53. SNIRH (Sistema Nacional de Informação de Recursos Hídricos–Portugal) (2009) Assessed 23 July 2009
  54. Srogi K (2007) Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: a review. Environ Chem Lett 5:169–195CrossRefGoogle Scholar
  55. Tian X, Liu J, Zhou G, Peng P, Wang X, Wang C (2008) Estimation of the annual scavenged amount of polycyclic aromatic hydrocarbons by forests in the Pearl River Delta of Southern China. Environ Pollut 156:306–315CrossRefGoogle Scholar
  56. Tremolada P, Burnett V, Calamari D, Jones KC (1996) Spatial distribution of PAHs in the UK atmosphere using pine needles. Environ Sci Technol 30:3570–3577CrossRefGoogle Scholar
  57. Wang DG, Chen JW, Xu Z, Qiao XL, Huang LP (2005) Disappearance of polycyclic aromatic hydrocarbons sorbed on surfaces of pine [Pinus thunbergii] needles under irradiation of sunlight: volatilization and photolysis. Atmos Environ 39:4583–4591CrossRefGoogle Scholar
  58. Wenzel K-D, Weißflog L, Paladini E, Gantuz M, Guerreiro P, Puliafito C, Schüürmann G (1997) Immission patterns of airborne pollutants in Argentina and Germany II. Biomonitoring of organochlorine compounds and polycyclic aromatics. Chemosphere 34:2505–2518CrossRefGoogle Scholar
  59. Yang G-P (2000) Polycyclic aromatic hydrocarbons in the sediments of the South China Sea. Environ Pollut 108:163–171CrossRefGoogle Scholar
  60. Yang H-H, Lee W-J, Chen S-J, Lai S-O (1998) PAH emission from various industrial stacks. J Hazard Mater 60:159–174CrossRefGoogle Scholar
  61. Yunker MB, Macdonald RW, Vingarzan R, Mitchell RH, Goyette D, Sylvestre S (2002) PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem 33:489–515CrossRefGoogle Scholar
  62. Zhang XL, Tao S, Liu WX, Yang Y, Zuo Q, Liu SZ (2005) Source diagnostics of polycyclic aromatic hydrocarbons based on species ratios: a multimedia approach. Environ Sci Technol 39:9109–9114CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Nuno Ratola
    • 1
  • José Manuel Amigo
    • 2
  • Arminda Alves
    • 1
    Email author
  1. 1.LEPAE, Departamento de Engenharia QuímicaFaculdade de Engenharia da Universidade do PortoPortoPortugal
  2. 2.Department of Food Science, Quality and Technology, Faculty of Life SciencesUniversity of CopenhagenFrederiksberg CDenmark

Personalised recommendations