Does Grazing Pressure Modify Diuron Toxicity in a Biofilm Community?

  • J. C. López-Doval
  • M. Ricart
  • H. Guasch
  • A. M. Romaní
  • S. Sabater
  • I. Muñoz
Article

Abstract

Herbicides affect the structure and functional parameters of fluvial biofilm. Diuron is toxic to primary producers and disrupts endocrine activity. Here, we studied the interaction between this toxicant and several biological compartments in a simple food chain composed of herbivores (the snail Physella [Costatella] acuta) and biofilm. We used indoor experimental channels to which Diuron was added at a realistic concentration (2 μg/L). Bacterial survival and chlorophyll-a and photosynthetic activity were analyzed in the biofilm. We monitored biomass, mortality, reproduction, and motility as end points in the freshwater snail P. acuta. Our results showed that bacterial survival and photosynthetic activity were sensitive to Diuron. Snails were not affected by the herbicide at the concentration tested. No significant interactions between the toxicant and grazers were observed on the biofilm. Reproductive traits, however, were slightly affected, indicating a possible endocrine disruption.

References

  1. Arrhenius A, Grönvall F, Scholze M, Backhaus T, Blanck H (2004) Predictibility of the mixture of 12 similarly acting congeneric inhibitors of photosystem II in marine periphyton and epipsammon communities. Aquat Toxicol 68:351–367CrossRefGoogle Scholar
  2. Azevedo DA, Lacorte S, Viana P, Barceló D (2001) Analysis of priority pesticides and phenols in Portuguese river water by liquid chromatography—mass spectrometry. Chromatographia 53:113–118CrossRefGoogle Scholar
  3. Bérard A, Pelte T (1999) Les herbicides inhibiteurs du photo-systeme II, effects sur les communautes algales et leur dynamique. Rev Sci Eau 12:333–361Google Scholar
  4. Boulos L, Prevost M, Barbeau B, Coallier J, Desjardins R (1999) LIVE/DEAD BacLight: application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. J Microbiol Methods 37:77–86CrossRefGoogle Scholar
  5. Christian FA, Tate TM (1983) Toxicity of Fluometuron and Diuron on the intermediate sanil host (Lymnea spp.) of Fasciola hepatica. Bull Environ Contam Toxicol 30:628–631CrossRefGoogle Scholar
  6. Corbett JR (1974) The biochemical mode of action of pesticides. Academic Press, New YorkGoogle Scholar
  7. Czech P, Weber K, Dietrich DR (2001) Effects of endocrine modulating substances on reproduction in the hermaphroditic snail Lymnaea stagnalis L. Aquat Toxicol 53:103–114CrossRefGoogle Scholar
  8. Dorigo U, Leboulanger C, Bérard A, Bouchez A, Humbert JF, Montuelle B (2007) Lotic biofilm community structure and pesticide tolerance along a contamination gradient in vineyard area. Aquat Microb Ecol 50:91–102CrossRefGoogle Scholar
  9. Genty B, Briantiais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron-transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92Google Scholar
  10. Greeberg AE, Eaton AD, Cleseri LS (eds) (1999) Standard methods for the examination of water and wastewater. American Public Health Association, Washington DCGoogle Scholar
  11. Hartgers EM, Aalderink GH, Van den Brink PJ, Gylstra R, Wiegman JWF, Brock TCM (1998) Ecotoxicological threshold levels of a mixture of herbicides (atrazine, diuron and metolachlor) in freshwater microcosms. Aquat Ecol 32:135–152CrossRefGoogle Scholar
  12. Hayes WJ (1975) Toxicology of pesticides. Williams & Wilkins, Baltimore, MDGoogle Scholar
  13. Hunter RD (1980) Effects of grazing on the quantity and quality of freshwater aufwuchs. Hydrobiologia 69:251–259CrossRefGoogle Scholar
  14. Iannacone J, Caballero CR, Alvariño LF (2002) Crianza artificial del caracol de agua dulce Physa venustula (Gould) para estudios ecotoxicológicos de Plaguicidas. Agric Téc 62:323–324 (in Spanish)Google Scholar
  15. Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae, and natural phytoplankton. Biochem Physiol Pflanz 167:191–194Google Scholar
  16. Kaehler S, Froneman PW (2002) Herbivore-mediated increase in the photosynthetic capacity of marine biofilms: indirect effects of changing microalgal assemblage composition. Marine Ecol Prog Ser 234:15–22CrossRefGoogle Scholar
  17. Liechtenthaler HK, Burkard G, Grumbach KH, Meier D (1980) Physiological effects of photosystem II-herbicides on the development of the photosynthetic apparatus. Photosynth Res 1:29–43CrossRefGoogle Scholar
  18. Lock MA (1993) Attached microbial communities in rivers. In: Fored TE (ed) Aquatic microbiology: an ecological approach. Blackwell Scientific, Oxford, pp 113–138Google Scholar
  19. Ma J, Wang S, Wang P, Ma L, Chen X, Xu P (2006) Toxicity assessment of 40 herbicides to the green alga Raphidocelis subcapitata. Ecotoxicol Environ Safety 63:456–462CrossRefGoogle Scholar
  20. Matthiessen P, Gibbs PE (1998) Critical appraisal of the evidence for tributyltin-mediated endocrine disruption in molluscs. Environ Toxicol Chem 17:37–43CrossRefGoogle Scholar
  21. Molander S, Blanck H (1992) Detection of pollution-induced community tolerance (PICT) in marine periphyton communities established under Diuron exposure. Aquat Toxicol 22:129–144CrossRefGoogle Scholar
  22. Muñoz I, Real M, Guasch H, Navarro E, Sabater S (2000) Resource limitation by freshwater snail (Stagnicola vulnerata) grazing pressure: an experimental study. Arch Hydrobiol 148:517–532Google Scholar
  23. Muñoz I, Real M, Guasch H, Navarro E, Sabater S (2001) Effects of atrazine on periphyton under grazing pressure. Aquat Toxicol 55:239–249CrossRefGoogle Scholar
  24. Nebeker AV, Schuytema GS (1998) Chronic effects of the herbicide Diuron on freshwater cladoceran, amphipods, midges, minnows, worms and snails. Arch Environ Contam Toxicol 35:441–446CrossRefGoogle Scholar
  25. Noguerol TN, Boronat S, Casado M, Raldúa D, Barceló D, Piña B (2006) Evaluating the interactions of vertebrate receptors with persistent pollutants and antifouling pesticides using recombinant yeast assays. Anal Bioanal Chem 385:1012–1019CrossRefGoogle Scholar
  26. Oehlmann J, Schulte-Oehlmann U, Tillmann M, Markert B (2000) Effects of endocrine disruptors on prosobranch snails (Mollusca: Gastropoda) in the laboratory. Part I: bisphenol A and octylphenol as xeno-estrogens. Ecotoxicology 9:383–397CrossRefGoogle Scholar
  27. Pesce S, Fajon C, Bardot C, Bonnemoy F, Portelli C, Bohatier J (2006) Effects of the phenylurea herbicide Diuron on natural riverine microbial communities in an experimental study. Aquat Toxicol 78:303–314CrossRefGoogle Scholar
  28. Ricart M, Barcelo D, Geiszinger A, Guasch H, de Alda ML, Romani AM, Vidal G, Villagrasa M, Sabater S (2009) Effects of low concentrations of the phenylurea herbicide diuron on biofilm algae and bacteria. Chemosphere 76:1392–1401CrossRefGoogle Scholar
  29. Rodríguez-Mozaz S, López de Alda MJ, Barceló D (2004) Monitoring of estrogens, pesticides and bisphenol A in natural waters and drinking water treatment plants by solid-phase extraction-liquid chromatography-mass spectrometry. J Chromatogr A 1045:85–92CrossRefGoogle Scholar
  30. Sabater S, Guasch H, Ricart M, Romaní A, Vidal G, Klünder C, Schmitt-Jansen M (2007) Monitoring the effect of chemicals on biological communities. The biofilm as an interface. Anal Bioanal Chem 387:1425–1434CrossRefGoogle Scholar
  31. Sanders HO, Cope OB (1968) The relative toxicities of several pesticides to naiads of three species of stoneflies. Limnol Oceanogr 13:112–117CrossRefGoogle Scholar
  32. Schreiber U (2004) Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview In: Papageorgiou GC, Govindjee (eds) Chlorophyll fluorescence: a signature of photosynthesis. Kluwer Academic, DordrechtGoogle Scholar
  33. Steinman AD (1996) Effects of grazers on freshwater benthic algae. In: Stevenson RJ, Bothwell ML, Lowe RL (eds) Algal ecology. Academic Press, San Diego, pp 173–341Google Scholar
  34. Sumpono, Perotti P, Belan AP, Forestier CA, Lavedrine BC, Bohatier JB (2003) Effect of Diuron on aquatic bacteria in laboratory-scale wastewater treatment ponds with special reference to Aeromonas species studied by colony hybridization. Chemosphere 50:445–455CrossRefGoogle Scholar
  35. Teisseire H, Couderchet M, Vernet G (1999) Phytotoxicity of diuron alone and in combination with copper or folpet on duckweed (Lemna minor). Environ Pollut 106:39–45CrossRefGoogle Scholar
  36. Thurman EM, Goolby DA, Meyer MT, Kolpin DW (1991) Herbicides in surface waters of the Midwestern United States: the effect of spring flush. Environ Sci Technol 25:1794–1796CrossRefGoogle Scholar
  37. Tlili A, Dorigo U, Montuelle B, Margoum C, Carluer N, Gouy V, Bouchez A, Berard A (2008) Responses of chronically contaminated biofilms to short pulses of diuron. An experimental study simulating flooding events in a small river. Aquat Toxicol 87:252–263CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • J. C. López-Doval
    • 1
  • M. Ricart
    • 2
  • H. Guasch
    • 2
  • A. M. Romaní
    • 2
  • S. Sabater
    • 2
    • 3
  • I. Muñoz
    • 1
  1. 1.Department of EcologyUniversity of BarcelonaBarcelonaSpain
  2. 2.Department of Environmental Sciences, Institute of Aquatic EcologyUniversity of GironaGironaSpain
  3. 3.Catalan Institute for Water Research (ICRA)Science and Technology Park of the University of GironaGironaSpain

Personalised recommendations