Quantitative Behavioral Parameters as Toxicity Biomarkers: Fish Responses to Waterborne Cadmium

  • B. L. Eissa
  • N. A. Ossana
  • L. Ferrari
  • A. Salibián


The disruptive sublethal effects of heavy metals on behavioral parameters of fish as biomarkers of aquatic toxicity have been scarcely studied. We investigated the impact of exposure to sublethal waterborne cadmium on locomotory parameters of three freshwater teleosts: Cyprinus carpio as reference species, and Australoheros facetum (sin. Cichlasoma facetum) and Astyanax fasciatus, native to Pampean ecosystems in Argentina, using a noninvasive bioassay under laboratory conditions. Fish were successively transferred to media containing freshwater (control period), Cd2+ solutions (exposure period), and freshwater (recovery period). The behavioral biomarkers evaluated were swimming activity and swimming speed of fish. The metal provoked different responses of both parameters after 4–7 days of exposure; the reversibility of changes was also assessed. It was concluded that: (a) locomotion parameters are sensitive endpoints and useful biomarkers in behavioral studies of freshwater toxicity, (b) the applied bioassay could be a valuable tool in water quality monitoring, and (c) the studied species differed in their susceptibility to the toxicant as well as in their capacity to return to basal values.


Swimming Speed Fish Activity Swimming Activity Total Body Length Early Warning Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by grants from the National University of Lujan (Basic Sciences Department) and the Scientific Research Commission of Buenos Aires (CIC). The authors would like to thank Mr. J. Perez (CIC) for cadmium measurements.


  1. Asagba SO, Eriyamremu GE, Igberaese ME (2008) Bioaccumulation of Cadmium and its biochemical effect on selected tissues of the catfish (Clarias gariepinus). Fish Physiol Biochem 34:61–69CrossRefGoogle Scholar
  2. Atchison GJ, Henry MG, Sandheinrich MB (1987) Effects of metals on fish behavior: a review. Environ Biol Fishes 18:11–25CrossRefGoogle Scholar
  3. Baker CF, Montgomery JC (2001) Sensory deficits induced by Cadmium in banded kokopu, Galaxias fasciatus, juveniles. Environ Biol Fishes 62:455–464CrossRefGoogle Scholar
  4. Baldwin DH, Sandahl JF, Labenia JS, Scholz NL (2003) Sublethal effects of copper on the coho salmon: impacts on nonoverlapping receptor pathways in the peripheral olfactory nervous system. Environ Toxicol Chem 22:2266–2274CrossRefGoogle Scholar
  5. Beitinger TL (1990) Behavioral reactions for the assessment of stress in fishes. J Gt Lakes Res 16:495–528CrossRefGoogle Scholar
  6. Beitinger TL, McCauley RW (1990) Whole-animal physiological processes for the assessment of stress in fishes. J Gt Lakes Res 16:542–575CrossRefGoogle Scholar
  7. Beyers DW, Rice JA, Clements WH, Henry CJ (1999) Estimating physiological cost of chemical exposure: integrating energetics and stress to quantify toxic effects in fish. Can J Fish Aquat Sci 56:814–822CrossRefGoogle Scholar
  8. Boudou A, Ribeyre F (1997) Aquatic ecotoxicology: from the ecosystem to the cellular and molecular levels. Environ Health Perspect 105(Suppl 1):21–35CrossRefGoogle Scholar
  9. Bulus Rossini GD, Ronco AE (2004) Sensitivity of Cichlasoma facetum (Cichlidae, Pisces) to metals. Bull Environ Contam Toxicol 72:763–768CrossRefGoogle Scholar
  10. Castañé PM, Loez CR, Olguín HF, Puig A, Rovedatti MG, Topalián ML, Salibián A (1998) Caracterización y variación espacial de parámetros fisicoquímicos y del plancton en un río urbano contaminado (Río Reconquista, Argentina). Rev Int Contam Ambient 14:69–77Google Scholar
  11. Cazenave J, Nores ML, Miceli M, Díaz MP, Wunderlin DA, Bistoni MA (2008) Changes in the swimming activity and the glutathione S-transferase of Jenynsia multidentata fed with microcystin-RR. Water Res 42:1299–1307CrossRefGoogle Scholar
  12. De Conto Cinier C, Petit-Ramel M, Faure R, Garin D, Bouvet Y (1999) Kinetics of Cadmium accumulation and elimination in carp Cyprinus carpio tissues. Comp Biochem Physiol 122 C:345–352Google Scholar
  13. de la Torre FR (2001) Estudio integrado de la contaminación acuática mediante bioensayos y parámetros fisiológicos y bioquímicos indicadores de estrés ambiental. Doctoral Dissertation, Faculty of Exact and Natural Sciences, University of Buenos Aires, p 283Google Scholar
  14. de la Torre FR, Salibián A, Ferrari L (2000) Biomarkers assessment in juvenile Cyprinus carpio exposed to waterborne Cadmium. Environ Pollut 109:277–282CrossRefGoogle Scholar
  15. Di Giulio RF, Hinton DE (2008) The toxicology of fishes. CRC, Boca Raton, FLCrossRefGoogle Scholar
  16. Doving KB (1991) Assessment of animal behaviour as a method to indicate environmental toxicity. Comp Biochem Physiol 100C:247–252Google Scholar
  17. Drummond RA, Russom CL (1990) Behavioural toxicity syndromes: a promising tool for assessing toxicity mechanisms in juvenile fathead minnows. Environ Toxicol Chem 9:37–46CrossRefGoogle Scholar
  18. Eissa BL, Salibián A, Ferrari L, Porta P, Borgnia M (2003) Evaluación toxicológica no invasiva del cadmio: modificaciones de biomarcadores conductuales en Cyprinus carpio. Biología Acuática 20:56–62Google Scholar
  19. Eissa BL, Ferrari L, Ossana NA, Salibián A (2006a) Biomarcadores etológicos no invasivos de estrés ambiental: estudio comparativo en dos teleósteos de ecosistemas de la región pampeana argentina. Revista de Toxicología (Spain) 23:11–16Google Scholar
  20. Eissa BL, Salibián A, Ferrari L (2006b) Behavioral alterations in juvenile Cyprinus carpio (Linnaeus, 1758) exposed to sublethal waterborne Cadmium. Bull Environ Contam Toxicol 77:931–937CrossRefGoogle Scholar
  21. Eissa B, Ferrari L, Salibián A (2007) Análisis integrado de parámetros metabólicos en Cyprinus carpio expuestos a Cadmio. Abstr VIII Congr SETAC-Latin America 105Google Scholar
  22. Eissa BL, Salibián A, Ferrari L (2008) Alteraciones reversibles en la actividad natatoria y la estructura microscópica de las branquias de Australoheros facetum expuesto al Cadmio. Acta Toxicol Argent 16(Suppl):19Google Scholar
  23. Espina S, Salibián A, Rosas C, Sánchez A, Alcaraz G (1995) Acute physiological responses of grass carp Ctenopharyngodon idella fingerlings to sublethal concentrations of Cadmium. Acta Toxicol Argent 3:8–10Google Scholar
  24. Espina S, Salibián A, Díaz F (2000) Influence of Cadmium on the respiratory function of the grass carp Ctenopharyngodon idella. Water Air Soil Pollut 119:1–10CrossRefGoogle Scholar
  25. Ferrari L, Eissa BL, Salibián A, Borgnia M (2003) Bioindicadores de contaminación acuática: parámetros morfológicos y fisiológicos de peces. Abstr. VI Congr SETAC Latin America, pp 118–119Google Scholar
  26. Ferrari L, Eissa BL, Ossana NA, Salibián A (2005) Effects of sublethal Cadmium exposure on the morphology of gills of Cyprinus carpio. Acta Toxicol Argent 13(Suppl):18–19Google Scholar
  27. Fleeger JW, Carman KR, Nisbet RM (2003) Indirect effects of contaminants in aquatic ecosystems. Sci Total Environ 317:207–233CrossRefGoogle Scholar
  28. Giattina JD, Garton RR, Stevens DG (1982) Avoidance of Copper and Nickel by rainbow trout as monitored by a computer-based data acquisition system. Trans Am Fish Soc 111:491–504CrossRefGoogle Scholar
  29. Gilmour KM, Wilson RW, Sloman KA (2005) The integration of behaviour into Comparative Physiology. Physiol Biochem Zool 78:669–678CrossRefGoogle Scholar
  30. Gómez SE, González Naya J, Giusto A (2003) Velocidad de natación de un especialista en maniobra, Cichlasoma facetum (Jenyns) (Pisces, Cichlidae), en condiciones experimentales. Rev Mus Argentino Cienc Nat 5:87–92Google Scholar
  31. Grue CE, Gardner SC, Gibert PL (2002) On the significance of pollutant-induced alterations in the behaviour of fish and wildlife. In: Dell’Omo G (ed) Behavioural ecotoxicology. Wiley, UK, pp 1–90Google Scholar
  32. Kane AS, Salierno JD, Brewer SK (2005) Fish models in behavioral toxicology automated techniques, updates and perspectives. In: Ostrander GK (ed) Methods in aquatic toxicology, vol 2. Lewis, Boca Raton, FL, pp 559–590Google Scholar
  33. Kolok AS (1999) Interindividual variation in the prolonged locomotor performance in ectothermic vertebrates: a comparison of fish and herpetofaunal methodologies and a brief review of the recent fish literature. Can J Fish Aquatic Sci 56:700–710CrossRefGoogle Scholar
  34. Kolok AS, Plaisance EP, Abdelghani A (1998) Individual variation in the swimming performance of fishes: an overlooked source of variation in toxicity studies. Environ Toxicol Chem 17:282–285CrossRefGoogle Scholar
  35. Little EE, Finger SE (1990) Swimming behavior as an indicator of sublethal toxicity in fish. Environ Toxicol Chem 9:13–19CrossRefGoogle Scholar
  36. López HL, Menni RC, Battistoni PA, Cuello MV (2003) Bibliografía de los peces de agua dulce de la Argentina. Suplemento 1996–2002. ProBiota. Serie Técnica y Didáctica 6:1–29Google Scholar
  37. Ossana NA, Eissa BL, Salibián A (2009) Cadmium bioconcentration and genotoxicity in the common carp (Cyprinus carpio). Int J Environ Health 3:302–309CrossRefGoogle Scholar
  38. Ringuelet RA, Arámburu H, Alonso de Aramburu A (1967) Los peces de agua dulce. La Plata. Comisión de Investigaciones Científicas Provincia de Buenos Aires, ArgentinaGoogle Scholar
  39. Salibián A (2006) Ecotoxicological assessment of the highly polluted Reconquista River of Argentina. In: Ware GW (ed) Reviews of Environmental Contamination and Toxicology, vol 185. Springer, New York, pp 35–65CrossRefGoogle Scholar
  40. Salibián A, Fichera LE (1981) Ecotoxicology of pyrethroid insecticides: short term effects of Decis 2–5 on juvenile Astyanax (Astyanax) fasciatus fasciatus (Tetragonopteridae, Pisces) in captivity. Comp Biochem Physiol 70 C:265–268Google Scholar
  41. Schmidt K, Staaks GBO, Pflugmacher S, Steinberg CEW (2005) Impact of PCB mixture (Aroclor 1254) and TBT and a mixture of both on swimming behaviour, body growth and enzymatic biotransformation activities (GST) of young carp (Cyprinus carpio). Aquat Toxicol 71:49–59CrossRefGoogle Scholar
  42. Scott GR, Sloman KA (2004) The effects of environmental pollutants on complex fish behaviour: integrating behavioural and physiological indicators of toxicity. Aquat Toxicol 68:369–392CrossRefGoogle Scholar
  43. Shedd TR, van der Schalie WH, Widder MW, Burton DT, Burrows EP (2001) Long-term operation of an automated fish biomonitoring system for continuous effluent acute toxicity surveillance. Bull Environ Contam Toxicol 66:392–399CrossRefGoogle Scholar
  44. Shirer H, Cairns J, Waller W (1968) A simple apparatus for measuring activity patterns of fishes. Water Res Bull 4:27–43Google Scholar
  45. Sloman KA (2007) Effect of trace metals on salmonid fish: the role of social hierarchies. Appl Anim Behav Sci 104:326–345CrossRefGoogle Scholar
  46. Sloman KA, Wilson RW, Balshine S (2006) Behaviour and physiology of fish. Academic, San Diego, CAGoogle Scholar
  47. Sullivan JF, Atchison GJ, Kolar DJ, McIntosh AW (1978) Changes in the predator-prey behavior of fathead minnows (Pimephales promelas) and largemouth bass (Micropterus salmoides) caused by Cadmium. J Fish Res Board Can 35:446–451Google Scholar
  48. Svecevicius G (1999) Fish avoidance response to heavy metals and their mixtures. Acta Zool Lituanica Hidrobiologia 9:103–113Google Scholar
  49. Tate-Boldt EK, Kolok AS (2008) Copper acclimation in juvenile fathead minnows: is a cycle of branchial damage and repair necessary? Aquat Toxicol 87:13–18CrossRefGoogle Scholar
  50. Topalian ML, Castañé PM, Rovedatti MG, Salibián A (1999) Principal component analysis of dissolved heavy metals in water of the Reconquista River (Buenos Aires, Argentina). Bull Environ Contam Toxicol 63:484–490CrossRefGoogle Scholar
  51. US EPA (1985) Ambient water quality criteria for cadmium. EPA-440/5-84-032, Virginia, National Technical Information ServiceGoogle Scholar
  52. US DHHS-ATSDR (1993) Toxicological profile for cadmium (TP-92/06)Google Scholar
  53. US EPA (2001) Update of ambient water quality criteria for cadmium. EPA-8222-R-01-001, Washington DC. US EPA Office of WaterGoogle Scholar
  54. US EPA (2007) Framework for metals risk assessment. EPA 120/R-07/001. Office of the Science Advisor, Washington, DCGoogle Scholar
  55. van der Oost R, Beyer J, Vermeulen NPE (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13:57–149CrossRefGoogle Scholar
  56. Vogl C, Grillitsch B, Wytek R, Spieser OH, Scholz W (1999) Qualification of spontaneous undirected locomotor behaviour of fish for sublethal toxicity testing. Part I Variability of measurement parameters under general test conditions. Environ Toxicol Chem 18:2736–2742CrossRefGoogle Scholar
  57. Waisberg M, Joseph P, Hale B, Beyersmann D (2003) Molecular and cellular mechanisms of Cadmium carcinogenesis. Toxicology 192:95–117CrossRefGoogle Scholar
  58. Weber DN, Spieler RE (1994) Behavioral mechanisms of metal toxicity in fishes. In: Malins DC, Ostrander GK (eds) Aquatic toxicology: molecular, biochemical and cellular perspectives. Lewis, Boca Raton, FL, pp 427–467Google Scholar
  59. Wendelaar Bonga SE (1997) The stress response in fish. Physiol Revs 77:591–625Google Scholar
  60. Wendelaar Bonga SE, Lock RAC (2008) The osmoregulatory system. In: Di Giulio RF, Hinton DE (eds) The toxicology of fishes. CRC Press, Boca Raton, FLGoogle Scholar
  61. WHO (1992) Cadmium. Environmental Aspects. Environmental Health Criteria Series Nº 135. GenevaGoogle Scholar
  62. Wright DA, Welbourn PM (1994) Cadmium in the aquatic environment: a review of ecological, physiological and toxicological effects on biota. Environ Rev 2:187–214Google Scholar
  63. Yilmaz M, Gul A, Karakose E (2003) Investigation of acute toxicity and the effect of Cadmium chloride (CdCl2·H2O) metal salt on behavior of the guppy (Poecilia reticulata). Chemosphere 56:375–380Google Scholar
  64. Zar JH (1996) Biostatistical analysis. Prentice Hall, Upper Saddle River, NJGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • B. L. Eissa
    • 1
    • 2
    • 3
  • N. A. Ossana
    • 1
    • 3
    • 4
  • L. Ferrari
    • 1
    • 2
    • 3
  • A. Salibián
    • 1
    • 2
    • 3
    • 5
  1. 1.Applied Ecophysiology Program, Basic Sciences DepartmentNational University of Lujan (UNLu)LujanArgentina
  2. 2.Scientific Research CommissionLa PlataArgentina
  3. 3.Institute of Ecology and Sustainable Development (INEDES-UNLu)LujanArgentina
  4. 4.National Council of Scientific and Technological Research (CONICET)Buenos AiresArgentina
  5. 5.Universidad Nacional de LujánLujanArgentina

Personalised recommendations