Impact of the Use of Fluvalinate on Different Types of Beeswax from Spanish Hives

  • Sabine Adamczyk
  • Regina LázaroEmail author
  • Consuelo Pérez-Arquillué
  • Susana Bayarri
  • Antonio Herrera


Acaricides are applied in agriculture as phytosanitary products against pests and in apiculture to control the bee parasite Varroa destructor. Poor apicultural practices could result in an accumulation of residues in honeybees, in the environment, and in beeswax and other bee products by migration from the wax comb into stored honey through a process of diffusion and consequently constitute a potential risk for humans. In this study, six different types of beeswax samples were analysed for the determination of residues of fluvalinate, coumaphos, and bromopropylate and its metabolite 4,4′-dibromobenzophenone, all of which are the most commonly acaricides used by Spanish beekeepers against V. destructor. The analytic method consists of solid-phase extraction on a SPE Florisil cartridge and high-performance liquid chromatography separation using a photo diode array detector. The results show that fluvalinate residues were detected in 36.3% of samples, ranging from 1.2 to 6.6 μg/g wax. Residues of coumaphos, bromopropylate, and 4,4′-dibromobenzophenone were not found to be greater than their detection limits. This study indicates that the analysis of these compounds in beeswax samples could be used as bioindicators of fluvalinate sanitary treatment and handling practices applied by beekeepers.


Propolis Royal Jelly Beeswax Coumaphos Brood Comb 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Thanks are given to Dr. Klaus Wallner and his team (Landesanstalt fuer Bienenkunde, Universitaet Hohenheim, Germany); to Spanish Beekeepers, Government of Aragón (Spain) for its financial support (DGA/Grupo de Investigación Consolidado A01/2008); and to DGA/CONSI+D and CAI.


  1. Adamczyk S, Lázaro R, Pérez-Arquillué C, Herrera A (2007) Determination of synthetic acaricides residues in beeswax by high-performance liquid chromatography with photodiode array detector. Anal Chim Acta 581:95–101CrossRefGoogle Scholar
  2. Balayannis PG (2001) Gas chromatographic determination of coumaphos and tau-fluvalinate residues in royal jelly produced under commercial conditions. J Apic Res 40:71–78Google Scholar
  3. Bogdanov S (2004) Beeswax: quality issues today. Bee World 85:46–50Google Scholar
  4. Bogdanov S (2006) Contaminants of bee products. Apidologie 37:1–18CrossRefGoogle Scholar
  5. Bogdanov S, Kilchenmann V (2005) Die Qualitaet des Bienenwachses: Rueckstaende. Swiss Bee Research Centre: 1–6. Available at Accessed 1 July 2006
  6. Bogdanov S, Kilchenmann V, Imdorf A (1998) Acaricide residues in some bee products. J Apic Res 37:57–67Google Scholar
  7. Chauzat MP, Faucon JP (2007) Pesticides residues in beeswax samples collected from honey-bee colonies (Apis mellifera) in France. Pest Manag Sci 63:1100–1106CrossRefGoogle Scholar
  8. Colin ME, Vandame R, Jourdan P, Di Pasquale S (1997) Fluvalinate resistance of Varroa jacobsoni Oudemans (Acari: Varroidae) in the Mediterranean apiaries of France. Apidologie 28:375–384CrossRefGoogle Scholar
  9. Collins AM, Pettis JS, Wilbanks R, Feldlaufer MF (2004) Performance of honey bee (Apis mellifera) queens reared in beeswax cells impregnated with coumaphos. J Apicult Res 43:128–134Google Scholar
  10. Coumaphos Summary Report (2001) Committee for veterinary medicinal products. The European Agency for the Evaluation of Medicinal Products. Veterinary Medicines Evaluation Unit. Available at Accessed 5 Aug 2005
  11. European Agency for Evaluation of Medical Products (2000) Status of MRL procedures. MRL assessments in the context of Council Regulation (EEC) No 2377/90 EMEA/CVMP/765/99-Rev.5:1–18Google Scholar
  12. Fries I, Wallner K, Rosenkranz P (1998) Effects on Varroa jacobsoni from acaricides in beeswax. J Apic Res 37:85–90Google Scholar
  13. International Programme on Chemical Safety Chemical Safety Information from Intergovernmental Organizations (1973) International Programme on Chemical Safety, Bromopropylate JMPR. Available at Accessed 2 Aug 2005
  14. Jimenez JJ, Bernal JL, del Nozal MJ, Martin MT (2005) Residues of organic contaminants in beeswax. Eur J Lipid Sci Technol 107:896–902CrossRefGoogle Scholar
  15. Klein E, Weber W, Hurler E, Mayer L (1986) Gaschromatographische Bestimmung von Isopropyl-4,4′Dibrombenzilat (Brompropylat), 4,4′Dibrombenzophenon und verschiedenen Akariziden in Honig und Wabenwachs. Dtsch Lebensmitt Rundsch 82:185–187Google Scholar
  16. Kochansky J, Wilzer K, Feldlaufer M (2001) Comparison of the transfer of coumaphos from beeswax into syrup and honey. Apidologie 32:119–125CrossRefGoogle Scholar
  17. Korta E, Bakkali A, Berrueta LA, Gallo B, Vicente F, Bogdanov S (2003) Determination of amitraz and other acaricide residues in beeswax. Anal Chim Acta 475:97–103CrossRefGoogle Scholar
  18. Lodesani M, Pellacani A, Bergomi S, Carpana E, Rabitti T, Lasagni P (1992) Residue determination for some products used against Varroa infestation in bees. Apidologie 23:257–272CrossRefGoogle Scholar
  19. Lodesani M, Costa C, Serra G, Colombo R, Sabatini AG (2008) Acaricide residues in beeswax after conversion to organic beekeeping methods. Apidologie 39:324–333CrossRefGoogle Scholar
  20. Macedo PA, Ellis MD, Siegfried BD (2002) Detection and quantification of fluvalinate resistance in Varroa mites in Nebraska. Am Bee J 142:523–526Google Scholar
  21. Martel AC, Zeggane S, Aurières C, Drajnudel P, Faucon JP, Aubert M (2007) Acaricide residues in honey and wax after treatment of honey bee colonies with Apivar® or Asuntol®. Apidologie 38:534–544CrossRefGoogle Scholar
  22. Menkissoglu-Spiroudis U, Tsigouri AD, Diamantidis GC, Thrasyvoulou AT (2001) Residues in honey and beeswax caused by beekeeping treatments. Fresenius Environ Bull 10:445–450Google Scholar
  23. Milani N, Della Vedova G (2002) Decline in the proportion of mites resistant to fluvalinate in a population of Varroa destructor not treated with pyrethroids. Apidologie 33:417–421CrossRefGoogle Scholar
  24. Moosbeckhofer R, Wallner K, Pechhacker H, Luh M, Womastek R (1995) Residue level in honey, wax and propolis after ten years of Varroa treatment in Austria. XXXIVth International Apicultural Congress, 15–19 Aug 1995. Apimondia Publishing, Lausanne, Switzerland, pp 193–195Google Scholar
  25. Mozes-Koch R, Slabezki Y, Efrat H, Kalev H, Kamer Y, Yakobson BA et al (2000) First detection in Israel of fluvalinate resistance in the varroa mite using bioassay and biochemical methods. Exp Appl Acarol 24:35–43CrossRefGoogle Scholar
  26. Mutinelli F (1999) Rules governing the use of products for Varroa control. Coordination in Europe of integrated control of Varroa mites in honey bee colonies (FAIR CT97-3686), Appendix to Final Technical Report from 98-01-01 to 99-12-31:43–50Google Scholar
  27. Persano L, Pulcini P, Morgia C, Marinelli E, Allegrini F, De Pace F et al (2003) Acaricide residues in wax: Research in Central Italy. Proceeding of XXXVII Congress Apimondia, Ljubljana, Slovenia, pp 1–3Google Scholar
  28. Pettis JS (2004) A scientific note on Varroa destructor resistance to coumaphos in United States. Apidologie 35:91–92CrossRefGoogle Scholar
  29. Pettis JS, Collins AM, Wilbanks R, Feldlaufer MF (2004) Effects of coumaphos on queens rearing in honey bee, Apis meffifera. Apidologie 35:605–610CrossRefGoogle Scholar
  30. Richtlinien zur Bekaempfung von Bienenkrankheiten (2003) Zentrum fuer Bienenforschung, Eidgenoessische Forschungsanstalt fuer Milchwirtschaft Liebefeld, Ch-3003 Bern. Available at Accessed 13 Mar 2006
  31. Sammataro D, Gerson U, Needham G (2000) Parasitic mites of honey bees: Life history, implication, and impact. Annu Rev Entomol 45:519–548CrossRefGoogle Scholar
  32. Tau Fluvalinate Revised Summary Report (1995) Committee for Veterinary Medicinal Products. The European Agency for the Evaluation of Medicinal Products. Veterinary Medicines Evaluation Unit. Available at Accessed 1 Jan 2006
  33. Thompson HM, Brown MA, Ball RF, Medwin HB (2002) First report of Varroa destructor resistance to pyrethroids in the UK. Apidologie 33:357–366CrossRefGoogle Scholar
  34. Thrasyvoulou AT, Pappas N (1988) Contamination of honey and wax with malathion and coumaphos used against the Varroa mite. J Apic Res 27:55–61Google Scholar
  35. Tremolada P, Bernardinnelli I, Colombo M, Spreafico M, Vighi M (2004) Coumaphos distribution in the hive ecosystem: case study for modelling applications. Ecotoxicology 13:589–601CrossRefGoogle Scholar
  36. Trouiller J (1998) Monitoring Varroa jacobsoni resistance to pyrethroids in WESTERN Europe. Apidologie 29:537–546CrossRefGoogle Scholar
  37. Tsigouri A, Menkissoglu-Spiroudis U, Thrasyvoulou A, Diamantidis G (2003) Fluvalinate residues in Greek honey and beeswax. Apiacta 38:50–53Google Scholar
  38. Tsigouri AD, Menkissoglu-Spiroudi U, Thrasyvoulou A, Diamantidis G (2004) Fluvalinate residues in honey and beeswax after different colony treatments. Bull Environ Contam Toxicol 72:975–982CrossRefGoogle Scholar
  39. Wallner K (1992) Diffusion varroazider Wirkstoffe aus dem Wachs in den Honig. Apidologie 23:4Google Scholar
  40. Wallner K (1999a) Varroacides and their residues in bee products. Apidologie 30:235–248CrossRefGoogle Scholar
  41. Wallner K (1999b) Residues of Varroacides in honey, beeswax and propolis. Coordination in Europe of integrated control of Varroa mites in honey bee colonies (FAIR CT97-3686). Appendix to Final Technical Report from 98-01-01 to 99-12-31:37–42Google Scholar
  42. Wallner K (2001) Die Wirkstoffverteilung im Bienevolk. Schweiz Bienenztg 3:28–31Google Scholar
  43. Zimmermann S, Gierschner KH, Vorwohl G (1993) Bestimmung von Brompropylat, 4,4′-Dibrombenzophenon, Coumaphos und Fluvalinat in Bienenwachs. Dtsch Lebensm Rundsch 89:341–343Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Sabine Adamczyk
    • 1
  • Regina Lázaro
    • 1
    Email author
  • Consuelo Pérez-Arquillué
    • 1
  • Susana Bayarri
    • 1
  • Antonio Herrera
    • 1
  1. 1.Department of Animal Production and Food Science, Veterinary FacultyUniversidad de ZaragozaZaragozaSpain

Personalised recommendations