Ability of Four Emergent Macrophytes to Remediate Permethrin in Mesocosm Experiments

  • M. T. Moore
  • R. Kröger
  • C. M. Cooper
  • S. SmithJr.
Article

Abstract

Increased focus is being placed on the ability of native vegetation to mitigate potential harmful effects of agricultural runoff, especially pyrethroid insecticides. Replicate 379 L Rubbermaid tubs (1.25 m [l] × 0.6 m [w] × 0.8 m [h]) were planted with individual species of cutgrass (Leersia oryzoides), cattails (Typha latifolia), bur-reed (Sparganium americanum), and powdery alligator-flag (Thalia dealbata), all common wetland macrophytes found in the Mississippi Delta, USA, agricultural region. Permethrin-enriched water (target concentration, 5 μg L−1) was pumped in at a 4-h hydraulic retention time at one end of the tub and discharged at the far end. Water samples were collected from discharge at 1-h intervals for 12 h and analyzed for permethrin concentrations. Permethrin removal rates were compared for the four different plant treatments and nonvegetated sediment-water controls. Results indicated that no particular single plant species was more effective at removing permethrin in water relative to unplanted controls. Overall mass reductions (from inflow to outflow) for cis-permethrin ranged from 67% ± 6% in T. latifolia to 71% ± 2% in L. oryzoides. The trans-permethrin overall mass reductions ranged from 76% ± 4% in S. americanum to 82% ± 2% in the unplanted control. Sediment and plant samples collected at the study conclusion indicated that 77%–95% of measured permethrin mass was associated with sediment for mesocosms planted with L. oryzoides, T. latifolia, and T. dealbata. Conversely, mesocosms planted with S. americanum had 83% of measured mass associated with the plant material. Specific plant-pesticide retention studies can lead to improved planning for best management practices and remediation techniques such as constructed wetlands and vegetated agricultural drainage ditches.

Notes

Acknowledgments

The authors thank L. Brooks, R. L. Lee, C. Helms, R. Menon, and B. McNeely for sample collection and analysis assistance. Thanks also go to P. Rodrigue and the USDA-NRCS Plant Materials Center in Coffeeville, Mississippi.

References

  1. Bar-Ilan I, Shmerkin S, Mingelgrin U, Levanon D (2000) Survey of pesticide distribution in upper Jordan basin. Water Air Soil Pollut 119:139–156. doi: 10.1023/A:1005138411271 CrossRefGoogle Scholar
  2. Bennett ER, Moore MT, Cooper CM, Smith S Jr (2000) Method for simultaneous extraction and analysis of two current use pesticides, atrazine and lambda-cyhalothrin, in sediment and aquatic plants. Bull Environ Contamin Toxicol 64:825–833. doi: 10.1007/s001280000077 CrossRefGoogle Scholar
  3. Bennett ER, Moore MT, Cooper CM, Smith S Jr, Shields FD Jr, Drouillard KG, Schulz R (2005) Vegetated agricultural drainage ditches for the mitigation of pyrethroid-associated runoff. Environ Toxicol Chem 24(9):2121–2127. doi: 10.1897/04-357R.1 CrossRefGoogle Scholar
  4. Cooper CM (1991) Persistent organochlorine and current use insecticide concentrations in major watershed components of Moon Lake, Mississippi, USA. Arch Hydrobiol 121:103–113Google Scholar
  5. Cooper CM, Moore MT, Bennett ER, Smith S Jr, Farris JL, Milam CD, Shields FD Jr (2004) Innovative uses of vegetated drainage ditches for reducing agricultural runoff. Water Sci Technol 49(3):117–123Google Scholar
  6. Daniels WM, House WA, Rae JE, Parker A (2000) The distribution of micro-organic contaminants in river bed-sediment cores. Sci Total Environ 253:81–92. doi: 10.1016/S0048-9697(00)00379-X CrossRefGoogle Scholar
  7. Garcinuno RM, Fernandez-Hernando P, Camara C (2006) Removal of carbaryl, linuron, and permethrin by Lupinus angustifolius under hydroponic conditions. J Agric Food Chem 54:5034–5039. doi: 10.1021/jf060850j CrossRefGoogle Scholar
  8. Gilliam JW (1994) Riparian wetlands and water quality. J Environ Qual 23:896–900Google Scholar
  9. House WA, Farr IS, Orr DR, Ou Z (1991) The occurrence of synthetic pyrethroid and selected organochlorine pesticides in river sediments. Br Crop Protect Council Monogr 47:183–192Google Scholar
  10. Imgrund H (2003) Environmental fate of permethrin. Available at: http://www.cdpr.ca.gov/docs/emon/pubs/fatememo/permethrin.pdf. Accessed January 9, 2009
  11. Kirby-Smith WW, Eisenreich SJ, Howe JT, Luettich RA Jr (1992) The effects in estuaries of pesticide runoff from adjacent farm lands. Final project report. U.S. Environmental Protection Agency, Gulf Breeze, FLGoogle Scholar
  12. Kreuger J (1998) Pesticides in stream water within an agricultural catchment in southern Sweden, 1990–1996. Sci Total Environ 216:227–251CrossRefGoogle Scholar
  13. Kreuger JK, Brink N (1988) Losses of pesticides from agriculture. In: Pesticides: food and environmental implications. International Atomic Energy Agency, Vienna, Austria, pp 101–112Google Scholar
  14. Kreuger J, Peterson M, Lundgren E (1999) Agricultural inputs of pesticide residues to stream and pond sediments in a small catchment in southern Sweden. Bull Environ Contam Toxicol 62:55–62. doi: 10.1007/s001289900841 CrossRefGoogle Scholar
  15. Laskowski DA (2002) Physical and chemical properties of pyrethroids. Rev Environ Contam Toxicol 174:49–170Google Scholar
  16. Lee S, Gan J, Kim J-S, Kabashima JN, Crowley DE (2004) Microbial transformation of pyrethroid insecticides in aqueous and sediment phases. Environ Toxicol Chem 23(1):1–6. doi: 10.1897/03-114 CrossRefGoogle Scholar
  17. Lutnicka H, Bogacka T, Wolska L (1999) Degradation of pyrethroids in an aquatic ecosystem model. Water Res 33(16):3441–3446. doi: 10.1016/S0043-1354(99)00054-8 CrossRefGoogle Scholar
  18. Moore MT, Rodgers JH Jr, Cooper CM, Smith S Jr (2000) Constructed wetlands for mitigation of atrazine-associated agricultural runoff. Environ Pollut 110:393–399. doi: 10.1016/S0269-7491(00)00034-8 CrossRefGoogle Scholar
  19. Moore MT, Bennett ER, Cooper CM, Smith S Jr, Shields FD Jr, Milam CD, Farris JL (2001a) Transport and fate of atrazine and lambda-cyhalothrin in an agricultural drainage ditch in the Mississippi Delta, USA. Agr Ecosyst Environ 87:309–314. doi: 10.1016/S0167-8809(01)00148-7 CrossRefGoogle Scholar
  20. Moore MT, Rodgers JH Jr, Cooper CM, Smith S Jr (2001b) Mitigation of metolachlor-associated agricultural runoff using constructed wetlands. Agr Ecosyst Environ 84:169–176. doi: 10.1016/S0167-8809(00)00205-X CrossRefGoogle Scholar
  21. Moore MT, Schulz R, Cooper CM, Smith S Jr, Rodgers JH Jr (2002) Mitigation of chlorpyrifos runoff using constructed wetlands. Chemosphere 46:827–835. doi: 10.1016/S0045-6535(01)00189-8 CrossRefGoogle Scholar
  22. Moore MT, Bennett ER, Cooper CM, Smith S Jr, Farris JL, Drouillard KG, Schulz R (2006) Influence of vegetation in mitigation of methyl parathion runoff. Environ Pollut 142(2):288–294. doi: 10.1016/j.envpol.2005.10.009 CrossRefGoogle Scholar
  23. Moore MT, Denton DL, Cooper CM, Wrysinski J, Miller JL, Reece K, Crane D, Robins P (2008) Mitigation assessment of vegetated drainage ditches for collecting irrigation runoff in California. J Environ Qual 37:486–493. doi: 10.2134/jeq2007.0172 CrossRefGoogle Scholar
  24. Rawn GP, Webster GRB, Muir DCG (1982) Fate of permethrin in model outdoor ponds. J Environ Sci Health B 17(5):463–486. doi: 10.1080/03601238209372335 CrossRefGoogle Scholar
  25. Schulz R (2004) Field studies on exposure, effects, and risk mitigation of aquatic nonpoint-source insecticide pollution: A review. J Environ Qual 33:419–448Google Scholar
  26. Schulz R, Peall SKC, Dabrowski JM, Reinecke AJ (2001) Spray deposition of two insecticides into surface waters in a South African orchard area. J Environ Qual 30:814–822Google Scholar
  27. Solomon KR, Yoo JY, Lean D, Kaushik NK, Day KE (1985) Dissipation of permethrin in limnocorrals. Can J Fish Aqua Sci 42(1):70–76. doi: 10.1139/f85-009 CrossRefGoogle Scholar
  28. Smith S Jr, Cooper CM (2004) Pesticides in shallow groundwater and lake water in the Mississippi Delta MSEA. In: Nett M, Locke MA, Pennington D (eds), Water quality assessments in the Mississippi delta, regional solutions, national scope. ACS symposium series 877. American Chemical Society, Oxford University Press, Chicago, IL, pp 91–103Google Scholar
  29. Smith S Jr, Cooper CM, Lizotte RE Jr, Shields FD Jr (2006) Storm pesticide concentrations in Little Toposhaw Creek, USA. Int J Ecol Environ Sci 32:173–182Google Scholar
  30. Sundaram KMS (1991) Fate and short-term persistence of permethrin insecticide injected in a northern Ontario (Canada) headwater stream. Pest Sci 31:281–294. doi: 10.1002/ps.2780310304 CrossRefGoogle Scholar
  31. Susarla S, Medina VF, McCutcheon SC (2002) Phytoremediation: an ecological solution to organic chemical contamination. Ecol Engin 18:647–658. doi: 10.1016/S0925-8574(02)00026-5 CrossRefGoogle Scholar
  32. Tanabe A, Mitobe H, Kawata K, Yasuhara A, Shibamoto T (2001) Seasonal and spatial studies on pesticide residues in surface waters of the Shinano River in Japan. J Agr Food Chem 49:3847–3852. doi: 10.1021/jf010025x CrossRefGoogle Scholar
  33. USEPA (2006) Permethrin facts (Reregistration Eligibility Decision [RED] fact sheet). EPA 738-F-06-012. U.S. Environmental Protection Agency, Office of Pesticide Programs, Washington, DCGoogle Scholar
  34. USEPA (2008) Available at: http://iaspub.epa.gov/waters/national_rept.control. Accessed February 20, 2008
  35. Wilcock RJ, Northcott GL, Nagels JW (1994) Mass losses and changes in concentration of chlorpyrifos and cis- and trans-permethrin applied to the surface of a stream. Bull Environ Contamin Toxicol 53:337–343. doi: 10.1007/BF00197223 CrossRefGoogle Scholar
  36. Willis GH, McDowell LL, Smith S Jr, Southwick LM (1986) Permethrin wash-off from cotton plants by simulated rainfall. J Environ Qual 15(2):116–120CrossRefGoogle Scholar
  37. Willis GH, McDowell LL, Smith S Jr, Southwick LM (1994) Permethrin and sulprofos wash-off from cotton plants as a function of time between application and initial rainfall. J Environ Qual 23:96–100Google Scholar
  38. Wolverton BC, Harrison DD (1973) Aquatic plants for removal of mevinphos for the aquatic environment. J Miss Acad Sci 19:84–88Google Scholar
  39. Yang WC, Gan J, Hunter W, Spurlock F (2006) Effect of suspended solids on bioavailablity of pyrethroid insecticides. Environ Toxicol Chem 25(6):1585–1591. doi: 10.1897/05-448R.1 CrossRefGoogle Scholar
  40. Yang WC, Hunter W, Spurlock F, Gan J (2007) Bioavailability of permethrin and cyfluthrin in surface waters with low levels of dissolved organic matter. J Environ Qual 36:1678–1685. doi: 10.2134/jeq2007.0164 CrossRefGoogle Scholar

Copyright information

© US Government 2009

Authors and Affiliations

  • M. T. Moore
    • 1
  • R. Kröger
    • 2
  • C. M. Cooper
    • 1
  • S. SmithJr.
    • 1
  1. 1.USDA-ARS National Sedimentation LaboratoryOxfordUSA
  2. 2.Department of Wildlife and FisheriesMississippi State UniversityMississippi StateUSA

Personalised recommendations