Demographic Responses to Multigeneration Cadmium Exposure in Two Strains of the Freshwater Gastropod, Biomphalaria glabrata

  • Christopher J. Salice
  • Thomas J. Miller
  • G. Roesijadi
Article

Abstract

A life table response experiment (LTRE) was used to quantify the population-level effects of continuous, multigeneration cadmium exposure on two strains of the freshwater gastropod, Biomphalaria glabrata: the parasite-resistant BS90 and parasite-susceptible NMRI strains. Snails were exposed to waterborne cadmium for three consecutive generations. Survival, growth, and reproduction were measured empirically and incorporated into a stage-based, deterministic population model. Cadmium significantly affected hatching success, time to maturity, and juvenile and adult survival in both strains. There were significant effects of generation on fecundity, hatching success, time to maturity and juvenile survival in NMRI, and time to maturity and adult survival in BS90. Cadmium significantly affected the population growth rate, λ, in BS90. Cadmium, generation, and the cadmium × generation interaction had significant effects on λ in NMRI. At the high cadmium exposure, λ for NMRI showed a decrease from generation 1 to generation 2, followed by an increase from generation 2 to generation 3. The λ value in high-cadmium BS90 steadily decreased over the three generations, while NMRI at this same concentration was similar to the controls. The results indicate that strain-specific differences in response to multigeneration cadmium exposure are evident in B. glabrata. Moreover, effects seen in the first generation are not necessarily indicative of effects in subsequent generations. Changes in λ over the course of the three-generation exposure suggest that acclimation and/or adaptation to cadmium may have occurred, particularly in NMRI at the high cadmium exposure level.

References

  1. Allah AT, Wanas MWS, Thompson SN (1997) Effects of heavy metals on survival and growth of Biomphalaria glabrata say (gastopoda: pulmonata) and interaction with schistosome infection. J Moll Stud 63:79–86. doi:10.1093/mollus/63.1.79 CrossRefGoogle Scholar
  2. Barata C, Baird DJ, Mitchell SE, Soares AMVM (2002) Among- and within-population variability in tolerance to cadmium stress in natural populations of Daphnia magna: implications for ecological risk assessment. Environ Toxicol Chem 21:1058–1064. doi :10.1897/1551-5028(2002)021<1058:AAWPVI>2.0.CO;2CrossRefGoogle Scholar
  3. Barnthouse LW, Munns WR, Sorensen MT (eds) (2008) Population-level ecological risk assessment. Taylor and Francis/CRC Press, Boca RatonGoogle Scholar
  4. Bengtsson G, Gunnarsson T, Rundgren S (1985) Influence of metals on reproduction, mortality and population growth in Onychiurus armatus (collembola). J Appl Ecol 22:967–978. doi:10.2307/2403244 CrossRefGoogle Scholar
  5. Brewster-Geisz KK, Miller TJ (2000) Management of the sandbar shark (Carcharhinus plumbeus): implications of a stage-based model. Fish Bull 98:236–249Google Scholar
  6. Caswell H (1989) Analysis of life table response experiments.i. Decomposition of effects on population growth rate. Ecol Model 46:221–237. doi:10.1016/0304-3800(89)90019-7 CrossRefGoogle Scholar
  7. Caswell H (1996a) Analysis of life table response experiments. ii. Alternative parameterizations for size- and stage-structured models. Ecol Model 88:73–92. doi:10.1016/0304-3800(95)00070-4 CrossRefGoogle Scholar
  8. Caswell H (1996b) Demography meets ecotoxicology: untangling the population level effects of toxic substances. In: Newman MC, Jagoe CH (eds) Ecotoxicology: a hierarchical approach. CRC Press/Lewis Publishers, Boca Raton, pp 255–292 Google Scholar
  9. Caswell H (2000) Prospective and retrospective analyses: their roles in conservation biology. Ecology 81:619–627CrossRefGoogle Scholar
  10. Crowder LB, Crouse DT, Heppell SS, Martin TH (1994) Predicting the impact of turtle excluder devices on loggerhead sea turtle populations. Ecol Appl 4:437–445. doi:10.2307/1941948 CrossRefGoogle Scholar
  11. de Kroon H, Plaisier A, van Groenendael J, Caswell H (1986) Elasticity: the relative contribution of demographic parameters to population growth rate. Ecology 67:1427–1431. doi:10.2307/1938700 CrossRefGoogle Scholar
  12. Forbes VE, Calow P (1999) Is the per capita rate of increase a good measure of population-level effects in ecotoxicology? Environ Toxicol Chem 18:1544–1556. doi :10.1897/1551–5028(1999)018<1544:ITPCRO>2.3.CO;2CrossRefGoogle Scholar
  13. Guan R, Wang W-X (2006a) Comparison between two clones of Daphnia magna: effects of multigenerational cadmium exposure on toxicity, individual fitness, and biokinetics. Aquat Toxicol 76:217–229. doi:10.1016/j.aquatox.2005.10.003 CrossRefGoogle Scholar
  14. Guan R, Wang W-X (2006b) Multigenerational cadmium acclimation and biokinetics in Daphnia magna. Environ Poll 141:343–352. doi:10.1016/j.envpol.2005.08.036 CrossRefGoogle Scholar
  15. Janssen CR, De Schamphelaere K, Heijerick D, Muyssen B, Lock K, Bossuyt B, Vangheluwe M, Van Sprang P (2000) Uncertainties in the environmental risk assessment of metals. Hum Ecol Risk Assess 6:1003–1018. doi:10.1080/10807030091124257 CrossRefGoogle Scholar
  16. Kammenga JE, Busschers M, Van Straalen NM, Jepson PC, Bakker J (1996) Stress induced fitness reduction is not determined by the most sensitive life-cycle trait. Funct Ecol 10:106–111. doi:10.2307/2390268 CrossRefGoogle Scholar
  17. Klerks PL, Weiss JS (1987) Genetic adaptation to heavy metals in aquatic organisms: a review. Environ Poll 45:173–205. doi:10.1016/0269-7491(87)90057-1 CrossRefGoogle Scholar
  18. Kuhn A, Munns WR Jr, Poucher S, Champlin D, Lussier S (2000) Prediction of population-level response from mysid toxicity test data using population modeling techniques. Environ Toxicol Chem 19:2364–2371. doi :10.1897/1551-5028(2000)019<2364:POPLRF>2.3.CO;2CrossRefGoogle Scholar
  19. Levin L, Caswell H, Bridges T, DiBacco C, Cabrera D, Plaia G (1996) Demographic responses of estuarine polychaetes to pollutants: life table response experiments. Ecol Appl 6:1295–1313. doi:10.2307/2269608 CrossRefGoogle Scholar
  20. Lingjaerde OC, Stenseth NC, Kristoffersen AB, Smith RH, Moe SJ, Read JM, Daniels S, Simkiss K (2001) Exploring the density-dependent structure of blowfly populations by nonparametric additive modeling. Ecology 82:2645–2658Google Scholar
  21. Miller TJ (2003) Incorporating space into models of blue crab populations. Bull Mar Sci 72:567–588Google Scholar
  22. Münzinger A, Guarducci M-L (1988) The effect of low zinc concentrations on some demographic parameters of Biomphalaria glabrata (say), mollusca: gastropoda. Aquat Toxicol 12:51–61. doi:10.1016/0166-445X(88)90019-7 CrossRefGoogle Scholar
  23. Muyssen BTA, Janssen CR (2004) Multi-generation cadmium acclimation and tolerance in Daphnia magna straus. Environ Poll 130:309–316. doi:10.1016/j.envpol.2004.01.003 CrossRefGoogle Scholar
  24. Postma JF, Davids C (1995) Tolerance induction and life cycle changes in cadmium-exposed Chironomus riparius (diptera) during consecutive generations. Ecotoxicol Environ Saf 30:195–202. doi:10.1006/eesa.1995.1024 CrossRefGoogle Scholar
  25. Raimondo S, McKenney CJ, Barron MG (2006) Application of perturbation simulations in population risk assessment for different life history strategies and elasticity patterns. Hum Ecol Risk Assess 12:983–999. doi:10.1080/10807030600826904 CrossRefGoogle Scholar
  26. Rao TR, Sarma SS (1986) Demographic parameters of Brachionus patulus muller (rotifera) exposed to sublethal DDT concentrations at low and high food levels. Hydrobiologia 139:193–200. doi:10.1007/BF00028292 CrossRefGoogle Scholar
  27. Richards CS, Knight K, Lewis FA (1992) Genetics of Biomphalaria glabrata and its effect on the outcome of Schistosoma mansoni infection. Parasitol Today 8:171–174. doi:10.1016/0169-4758(92)90015-T CrossRefGoogle Scholar
  28. Roesijadi G (1992) Metallothioneins in metal regulation and toxicity in aquatic animals. Aquat Toxicol 22:81–114. doi:10.1016/0166-445X(92)90026-J CrossRefGoogle Scholar
  29. Salice CJ, Miller TJ (2003) Population-level responses to long-term cadmium exposure in two strains for the freshwater gastropod, Biomphalaria glabrata: results from a life-table response experiment. Environ Toxicol Chem 22:678–688. doi :10.1897/1551-5028(2003)022<0678:PLRTLT>2.0.CO;2CrossRefGoogle Scholar
  30. Salice CJ, Roesijadi G (2002) Resistance to cadmium and parasite infection are inversely related in two strains of a freshwater gastropod. Environ Toxicol Chem 21:1398–1403. doi :10.1897/1551-5028(2002)021<1398:RTCAPI>2.0.CO;2CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Christopher J. Salice
    • 1
    • 2
  • Thomas J. Miller
    • 1
  • G. Roesijadi
    • 1
    • 3
  1. 1.Chesapeake Biological LaboratoryUniversity of Maryland Center for Environmental ScienceSolomonsUSA
  2. 2.U.S. EPA/OPP/EFEDWashingtonUSA
  3. 3.Marine Sciences DivisionPacific Northwest National LaboratorySequimUSA

Personalised recommendations