Studies on the Toxicological Effects of PFOA and PFOS on Rats Using Histological Observation and Chemical Analysis

  • Lin Cui
  • Qun-fang Zhou
  • Chun-yang Liao
  • Jian-jie Fu
  • Gui-bin Jiang


As an emerging class of environmentally persistent and bioaccumulative contaminants, perfluorinated compounds (PFCs), especially perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), have been ubiquitously found in the environment. Increasing evidence shows that the accumulated levels of PFCs in animals and the human body might cause potential impairment to their health. In the present study, toxicological effects of PFOA and PFOS on male Sprague–Dawley rats were examined after 28 days of subchronic exposure. Abnormal behavior and sharp weight loss were observed in the high-dose PFOS group. Marked hepatomegaly, renal hypertrophy, and orchioncus in treated groups were in accordance with the viscera–somatic indexes of the liver, kidney, and gonad. Histopathological observation showed that relatively serious damage occurred in the liver and lung, mainly including hepatocytic hypertrophy and cytoplasmic vacuolation in the livers and congestion and thickened epithelial walls in the lungs. PFOA concentrations in main target organs were in the order of kidney > liver > lung > (heart, whole blood) > testicle > (spleen, brain), whereas the bioaccumulation order for PFOS was liver > heart > kidney > (whole blood) > lung > (testicle, spleen, brain). The highest concentration of PFOA detected in the kidney exposed to 5 mg/kg/day was 228 ± 37 μg/g and PFOS in the liver exposed to 20 mg/kg/day reached the highest level of 648 ± 17 μg/g, indicating that the liver, lung, and kidney might serve as the main target organs for PFCs. Furthermore, a dose-dependent accumulation of PFOS in various tissues was found. The accumulation levels of PFOS were universally higher than PFOA, which might explain the relative high toxicity of PFOS. The definite toxicity and high accumulation of the tested PFCs might pose a great threat to biota and human beings due to their widespread application in various fields.


Histopathological Observation Perfluorooctane Sulfonate PFOA Exposure Main Target Organ PFOA Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was jointly supported by the Chinese Academy of Sciences (KZCX2-YW-420-21), the National Natural Science Foundation of China (20737003, 40503014), and the National Science and Technology Ministry of China (2006BAK02A06-2).


  1. Abdellatif AG, Preat V (1990) Peroxisome proliferation and modulation of rat liver carcinogenesis by 2, 4-dichlorophenoxyacetic acid, 2, 4, 5-trichlorophenoxyacetic acid, perfluorooctanoic acid and nafenopin. Carcinogenesis 11:1899–1902. doi: 10.1093/carcin/11.11.1899 CrossRefGoogle Scholar
  2. Abdellatif AG, Preat V (1999) The modulation of rat liver carcinogenesis by perfluorooctanoic acid, a peroxisome proliferator. Toxicol Appl Pharm 111:530–537. doi: 10.1016/0041-008X(91)90257-F CrossRefGoogle Scholar
  3. Andersen ME, Clewell HJIII, Tan YM, Butenhoff JL, Olsen GW (2006) Pharmacokinetic modeling of saturable, renal resorption of perfluoroalkylacids in monkeys: probing the determinants of long plasma half-lives. Toxicology 227:156–164. doi: 10.1016/j.tox.2006.08.004 CrossRefGoogle Scholar
  4. Austin ME, Kasturi BS, Barber M, Kannan K, MohanKumar PS, MohanKumar SMJ (2003) Neuroendocrine effects of perfluorooctane sulfonate in rats. Environ Health Perspect 11:1485–1489Google Scholar
  5. Batenburg JJ (1992) Surfactant phospholipids: synthesis and storage. Am J Physiol 262:L367–L385Google Scholar
  6. Berthiaume J, Wallace KB (2002) Perfluorooctanoate, perfluorooctane sulfonate and N-ethyl-perfluorooctanesulfonamido ethanol: Peroxisome proliferation and mitochondrial biogenenesis. Toxicol Lett 129:23–32. doi: 10.1016/S0378-4274(01)00466-0 CrossRefGoogle Scholar
  7. Butenhoff JL, Kennedy JGL, Hinderliter PM et al (2004) Pharmacokinetics of perfluorooctanoate in Cynomolgus monkeys. Toxicol Sci 82:394–406. doi: 10.1093/toxsci/kfh302 CrossRefGoogle Scholar
  8. Butenhoff JL, York R, Seacat A, Luebker D (2002) Perfluorooctanesulfonate-induced perinatal mortality in rat pups is associated with a steep dose-response. Toxicologist 66:25Google Scholar
  9. Chen LC, Tatum V, Glauert HP, Chow CK (2001) Peroxisome proliferator perfluorodecanoic acid alters glutathione and related enzymes. J Biochem Mol Toxicol 15:107–112. doi: 10.1002/jbt.6 CrossRefGoogle Scholar
  10. Creuwels LAJM, van Golde LMG, Haagsman HP (1997) The pulmonary surfactant system: biochemical and clinical aspects. Lung 175:1–39. doi: 10.1007/PL00007554 CrossRefGoogle Scholar
  11. Dean WP, Jessup DC, Thompson G, Romig G, Powell D (1978) Fluorad fluorochemical surfactant FC–95 acute oral toxicity (LD50) study in rats. Study No.137-083. International Research and Development Corporation, Mattawan, MIGoogle Scholar
  12. DePierre JW (2002) Effects on rodents of perfluorofatty acids. In: Neilson AH (ed) The handbook of environmental chemistry. Springer-Verlag, Berlin, pp 203–248Google Scholar
  13. DuPont Haskell Laboratory (1982) Excretion and disposition of 14C-ammonium perfluorooctanoate in male and female rats, mice, hamsters, and rabbits. US EPA Public Docket AR-226. US Environmental Protection agency, Washington, DCGoogle Scholar
  14. Dzhekova SS, Bogdanska J, Stojkova Z (2001) Peroxisome proliferators: their biological and toxicological effects. Clin Chem Lab Med 39:468–474. doi: 10.1515/CCLM.2001.076 CrossRefGoogle Scholar
  15. Fisher AB, Dodia C (2001) Lysosomal-type PLA2 and turnover of alveolar DPPC. Am J Physiol 280:L748–L754Google Scholar
  16. Giesy JP, Kannan K (2001) Global distribution of perfluorooctane sulfonate in wildlife. Environ Sci Technol 35:1339–1342. doi: 10.1021/es001834k CrossRefGoogle Scholar
  17. Giesy JP, Kannan K (2002) Perfluorochemical surfactants in the environment. Environ Sci Technol 36:146A–152ACrossRefGoogle Scholar
  18. Goldenthal EI, Jessup DC, Geil RG, Mehring JS (1978) Ninety-day subacute rat toxicity study. Study No. 137-085. International Research and development Corporation, Mattawan, MIGoogle Scholar
  19. Grasty RC, Grey BE, Lau CS, Rogers JM (2003) Prenatal window of susceptibility to perfluorooctane sulfonate-induced neonatal mortality in the Sprague-Dawley rat. Birth Defects Res Part B-Dev Reprod Toxicol 68:465–471CrossRefGoogle Scholar
  20. Guruge KS, Yeung LWY, Yamanaka N et al (2007) Gene expression profiles in rat liver treated with perfluorooctanoic acid (PFOA). Toxicol Sci 89:93–107. doi: 10.1093/toxsci/kfj011 CrossRefGoogle Scholar
  21. Hallman M, Glumoff V, Ramet M (2001) Surfactant in respiratory distress syndrome and lung injury. Comp Biochem Physiol A: Mol Integr Physiol 129:287–294. doi: 10.1016/S1095-6433(01)00324-5 CrossRefGoogle Scholar
  22. Han X, Kermper RA, Jepson GW (2005) Subcellular distribution and protein binding of perfluorooctanoic acid in rat liver and kidney. Drug Chem Toxicol 28:197–209. doi: 10.1081/DCT-200052547 CrossRefGoogle Scholar
  23. Han X, Snow TA, Kemper RA, Jepson GW (2003) Binding of perfluorooctanoic acid to rat and human plasma proteins. Chem Res Toxicol 16:775–781. doi: 10.1021/tx034005w CrossRefGoogle Scholar
  24. Hansen KJ, Clemen LA, Ellefson ME, Johnson HO (2001) Compound-specific, quantitative characterization of organic fluorochemicals in biological matrices. Environ Sci Technol 35:766–770. doi: 10.1021/es001489z CrossRefGoogle Scholar
  25. Harada K, Inoue K, Morikawa A, Yoshinaga T, Saito N, Koizumi A (2005) Renal clearance of perfluorooctane sulfonate and perfluorooctanoate in humans and their species-specific excretion. Environ Res 99:253–261. doi: 10.1016/j.envres.2004.12.003 CrossRefGoogle Scholar
  26. Haughom B, Spydevold Ø (1992) The mechanism underlying the hypolipemic effect of perfluorooctanoic acid (PFOA), perfluorooctane sulphonic acid (PFOSA) and clofibric acid. Biochim Biophys Acta 1128:65–72Google Scholar
  27. Hosokawa M, Satoh T (1993) Differences in the induction of carboxylesterase isozymes in rat iver microsomes by perfluorinated fatty acids. Xenobiotica 23:1125–1133CrossRefGoogle Scholar
  28. Houde M, Martin JW, Letcher RJ, Solomon KR, Muir DG (2006) Biological monitoring of polyfluoroalkyl substances: a review. Environ Sci Technol 40:4138–4144. doi: 10.1021/es060233b CrossRefGoogle Scholar
  29. Hu WY, Jones PD, Celius T, Giesy JP (2005) Identification of genes responsive to PFOS using gene expression profiling. Environ Toxicol Pharmcol 19:57–70. doi: 10.1016/j.etap.2004.04.008 CrossRefGoogle Scholar
  30. Ikeda T, Aiba K, Fukuda K, Tanaka M (1985) The induction of peroxisome proliferation in rat liver by perfluorinated fatty acids, metabolically inert derivatives of fatty acids. J Biochem 98:475–482Google Scholar
  31. Johnson JD, Gibson SJ, Ober RE (1979) Extent and route of excretion and tissue distribution of total carbon-14 in rats after a single i.v. dose of FC-95-14C. Project No. 8900310200, Riker Laboratories, Inc., St. Paul, MN [EPA Docket No. 8(e)HQ-1180-00374]Google Scholar
  32. Kannan K, Corsolini S, Falandysz J et al (2004) Perfluorooctanesulfonate and related fluorochemicals in human blood from several countries. Environ Sci Technol 38:4489–4495. doi: 10.1021/es0493446 CrossRefGoogle Scholar
  33. Kemper R (2003) Perfluorooctanoic acid: toxicokinetics in the rat. Project ID: DuPont 7473. US EPA public docket, administrative record AR-226-1499Google Scholar
  34. Kennedy GL, Butenhoff JL, Olsen GW et al (2004) The toxicology of perfluorooctanoate. Crit Rev Toxicol 34:351–384. doi: 10.1080/10408440490464705 CrossRefGoogle Scholar
  35. Key BD, Howell RD, Criddle CS (1997) Fluorinated organics in the biosphere. Environ Sci Technol 9:2445–2554. doi: 10.1021/es961007c CrossRefGoogle Scholar
  36. Kouji H, Kayoko I, Akiko M, Takeo Y, Norimitsu S, Akio K (2005) Renal clearance of perfluorooctane sulfonate and perfluorooctanoate in humans and their species-specific excretion. Environ Res 99:253–261. doi: 10.1016/j.envres.2004.12.003 CrossRefGoogle Scholar
  37. Kudo N, Katakura M, Sato Y, Kawashima Y (2002) Sex hormone-regulated renal transport of perfluorooctanoic acid. Chem Biol Interact 139:301–316. doi: 10.1016/S0009-2797(02)00006-6 CrossRefGoogle Scholar
  38. Lau C, Butenhoff JL, Rogers JM (2004) The developmental toxicity of perfluoroalkyl acids and their derivatives. Toxicol Appl Pharm 198:231–241. doi: 10.1016/j.taap.2003.11.031 CrossRefGoogle Scholar
  39. Lau C, Thibodeaux JR, Hanson RG et al (2003) Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. II: Postnatal evaluation. Toxicol Sci 74:382–392. doi: 10.1093/toxsci/kfg122 CrossRefGoogle Scholar
  40. Luebker DJ, Hansen KJ, Bass NM, Buttenhoff JL, Seacat AM (2002) Interactions of fluorochemicals with rat liver fatty acid-binding protein. Toxicology 176:175–185. doi: 10.1016/S0300-483X(02)00081-1 CrossRefGoogle Scholar
  41. O’Brien ML, Cunningham ML, Spear BT, Glauert HP (2001) Effects of peroxisome proliferators on glutathione and glutathione-related enzymes in rats and hamsters. Toxicol Appl Pharmacol 171:27–37. doi: 10.1006/taap.2000.9111 CrossRefGoogle Scholar
  42. OECD (2002) Hazard assessment of perfluorooctanesulfonate (PFOS) and its salts. Unclassified ENV/JM/RD(2002)17/Final. Document No. JT00135607. Organisation for Economic Co-operation and Development, ParisGoogle Scholar
  43. Ohmori K, Kudo N, Katayama K, Kawashima Y (2003) Comparison of the toxicokinetics between perfluorocarboxylic acids with different carbon chain length. Toxicology 184:135–140. doi: 10.1016/S0300-483X(02)00573-5 CrossRefGoogle Scholar
  44. Panaretakis T, Shabalina IG, Grandér D, Shoshan MC, DePierre JW (2001) Reactive oxygen species and mitochondria mediate the induction of apoptosis in human hepatoma HepG2 cells by the rodent peroxisome proliferator and hepatocarcinogen, perfluorooctanoic acid. Toxicol Appl Pharm 173:56–64. doi: 10.1006/taap.2001.9159 CrossRefGoogle Scholar
  45. Pastoor TP, Lee KP, Perri MA, Gillies PJ (1987) Biochemical and morphological studies of ammonium perfluorooctanoate-induced hepatomegaly and peroxisome proliferation. Exp Mol Pathol 47:98–109. doi: 10.1016/0014-4800(87)90011-6 CrossRefGoogle Scholar
  46. Seacat AM, Thomford PJ, Hansen KJ et al (2003) Sub-chronic dietary toxicity of potassium perfluorooctanesulfonate in rats. Toxicology 83:117–131. doi: 10.1016/S0300-483X(02)00511-5 CrossRefGoogle Scholar
  47. Thibodeaux JR, Hanson RG, Rogers JM et al (2003) Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. I: Maternal and prenatal evaluations. Toxicol Sci 74:369–381. doi: 10.1093/toxsci/kfg121 CrossRefGoogle Scholar
  48. US EPA (2005) Draft risk assessment of the potential human health effects associated with exposure to perfluorooctanoic acid. US Environmental Protection Agency, Washington, DCGoogle Scholar
  49. Yang Q, Xie Y, Depierre JW (2000) Effects of peroxisome proliferators on the thymus and spleen of mice. Clin Exp Immunol 122:219–226. doi: 10.1046/j.1365-2249.2000.01367.x CrossRefGoogle Scholar
  50. Ylinen M, Kojo A, Hanhijärvi H, Peura P (1990) Disposition of perfluooctanoic acid in the rat after single and subchronic administration. Bull Environ Contam Toxicol 44:46–53. doi: 10.1007/BF01702360 CrossRefGoogle Scholar
  51. Zhang P, Shi YL, Cai YQ, Mou SF (2007) Determination of perfluorinated compounds in water samples by high performance liquid chromatography-electrospray tandem mass spectrometry. Chin J Anal Chem 35:969–972Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Lin Cui
    • 1
  • Qun-fang Zhou
    • 1
  • Chun-yang Liao
    • 1
  • Jian-jie Fu
    • 1
  • Gui-bin Jiang
    • 1
  1. 1.State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental SciencesChinese Academy of SciencesBeijingChina

Personalised recommendations