Effects of Activated Bt Transgene Products (Cry1Ab, Cry3Bb) on Immature Stages of the Ladybird Adalia bipunctata in Laboratory Ecotoxicity Testing

  • Jörg E. U. Schmidt
  • Cora U. Braun
  • Lisa P. Whitehouse
  • Angelika Hilbeck
Article

Abstract

Insect-active Bacillus thuringiensis (Bt) proteins are expressed by several transgenic crop plants to control certain pests, but nontarget organisms such as ladybirds also can be exposed to these proteins in the field. We developed an improved ecotoxicity testing protocol and conducted feeding trials in a laboratory setting to test for possible adverse effects of different concentrations of microbially produced trypsin-activated Cry1Ab and Cry3Bb toxins on the coccinellid Adalia bipunctata. Larval/pupal mortality, development time, and overall body mass accumulation were recorded. Even at the lowest concentration (5 μg/ml), A. bipunctata larvae fed with the lepidopteran-active Cry1Ab toxin exhibited significantly higher mortality than the control group. In experiments with the coleopteran-active Cry3Bb, only a concentration of 25 μg/ml resulted in a marginally significantly higher mortality compared to the control. Both experiments revealed a slight decline in mortality at the highest concentration of 50 μg/ml, though this was statistically significant only in the Cry1Ab treatment. No differences were detected for development time and body mass of newly emerged adults. Dilutions of the expression vector pBD10—used as a control to exclude effects of the toxin production method—at concentrations between 10 and 100 μg/ml revealed no significant effects on either of the studied parameters. This suggests that the increased mortality of larvae in the toxin feeding trials was caused directly by the activated Bt toxins and raises questions regarding their commonly postulated specificity and their mode of action in A. bipunctata. Implications of the reported results for ladybird populations and their biological pest control functions in transgenic crop ecosystems are discussed.

References

  1. Agarwala BK, Dixon AFG (1992) Laboratory study on cannibalism and interspecific predation in ladybirds. Ecol Entomol 17:303–309. doi:10.1111/j.1365-2311.1992.tb01062.x CrossRefGoogle Scholar
  2. AGBIOS (2008) GM Database. Information on GM approved products. Available at: http://www.agbios.com. Accessed January 6, 2008
  3. Andow DA, Lövei GL, Arpaia S (2006) Ecological risk assessment for Bt crops. Nat Biotechnol 24:749–751. doi:10.1038/nbt0706-749 CrossRefGoogle Scholar
  4. Andow DA, Hilbeck A (2004) Science-based risk assessment for non-target effects of transgenic crops. Bioscience 54:637–649. doi:10.1641/0006-3568(2004)054[0637:SRAFNE]2.0.CO;2 CrossRefGoogle Scholar
  5. Bøhn T, Primicerio R, Hessen DO, Traavik T (2008) Reduced fitness of Daphnia magna fed a Bt-transgenic maize variety. Arch Environ Toxicol Chem. doi: 10.1007/s00244-008-9150-5
  6. Bosch D, Schipper B, van der Kleij H, de Maagd RA, Stiekema WJ (1994) Recombinant Bacillus thuringiensis crystal proteins with new properties: possibilities for resistance management. Bio/Technology 12:915–918. doi:10.1038/nbt0994-915 CrossRefGoogle Scholar
  7. Broderick NA, Raffa KF, Handelsman J (2006) Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proc Natl Acad Sci USA 103:15196–15199. doi:10.1073/pnas.0604865103 CrossRefGoogle Scholar
  8. Canadian Food Inspection Agency (2006) Determination of the safety of Monsanto Canada Inc.’s glyphosate-tolerant, corn-rootworm-protected corn (Zea mays L.) event MON 88017. Decision document DD2006-57. Available at: http://www.agbios.com. Accessed January 6, 2008
  9. Crickmore N (2005) Using worms to better understand how Bacillus thuringiensis kills insects. Trends Microbiol 13:347–350. doi:10.1016/j.tim.2005.06.002 CrossRefGoogle Scholar
  10. De Clercq P, Bonte M, Van Speybroeck K, Bolckmans K, Deforce K (2005) Development and reproduction of Adalia bipunctata (Coleoptera: Coccinellidae) on eggs of Ephestia kuehniella (Lepidoptera: Phycitidae) and pollen. Pest Manag Sci 61:1129–1132. doi:10.1002/ps.1111 CrossRefGoogle Scholar
  11. de Maagd RA, Bravo A, Crickmore N (2001) How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet 17:193–199. doi:10.1016/S0168-9525(01)02237-5 CrossRefGoogle Scholar
  12. Deml R, Meise T, Dettner K (1999) Effects of Bacillus thuringiensis δ-endotoxins on food utilization, growth, and survival of selected phytophagous insects. J Appl Entomol 123:55–64. doi:10.1046/j.1439-0418.1999.00312.x CrossRefGoogle Scholar
  13. Dixon AFG (2000) Insect predator-prey dynamics. Ladybird beetles & biological control. Cambridge University Press, CambridgeGoogle Scholar
  14. Duan JJ, Head G, McKee MJ, Nickson TE, Martin JW, Sayegh FS (2002) Evaluation of dietary effects of transgenic corn pollen expressing Cry3Bb1 protein on a non-target ladybird beetle, Coleomegilla maculata. Entomol Exp Appl 104:271–280. doi:10.1023/A:1021258803866 CrossRefGoogle Scholar
  15. Dutton A, Klein H, Romeis J, Bigler F (2002) Uptake of Bt-toxin by herbivores feeding on transgenic maize and consequences for the predator Chrysoperla carnea. Ecol Entomol 27:441–447. doi:10.1046/j.1365-2311.2002.00436.x CrossRefGoogle Scholar
  16. Harwood JD, Wallin WG, Obrycki JJ (2005) Uptake of Bt endotoxins by nontarget herbivores and higher order arthropod predators: molecular evidence from a transgenic corn ecosystem. Mol Ecol 14:2815–2823. doi:10.1111/j.1365-294X.2005.02611.x CrossRefGoogle Scholar
  17. Harwood JD, Samson RA, Obrycki JJ (2007) Temporal detection of Cry1Ab endotoxins in coccinellid predators from fields of Bacillus thuringiensis corn. Bull Entomol Res 97:642–648. doi:10.1017/S000748530700524X CrossRefGoogle Scholar
  18. Hilbeck A, Schmidt JEU (2006) Another view on Bt proteins—How specific are they and what else might they do? Biopestic Int 2:1–50Google Scholar
  19. Hodek I, Honěk A (1996) Ecology of Coccinellidae. Kluwer Academic, DordrechtGoogle Scholar
  20. Hussein HM, Habuštová O, Sehnal F (2005) Beetle-specific Bacillus thuringiensis Cry3Aa toxin reduces larval growth and curbs reproduction in Spodoptera littoralis (Boisd.). Pest Manage Sci 61:1186–1192. doi:10.1002/ps.1112 CrossRefGoogle Scholar
  21. James C (2007) Global status of commercialized biotech/GM crops: 2007. ISAAA Brief 37. International Service for the Acquisition of Agri-Biotech Applications, Ithaca, NYGoogle Scholar
  22. Lang A, Lauber E, Darvas B (2007) Early-tier tests insufficient for GMO risk assessment. Nat Biotechnol 25:35–36. doi:10.1038/nbt0107-35 CrossRefGoogle Scholar
  23. Lanzoni A, Accinelli G, Bazzocchi GG, Burgio G (2004) Biological traits and life table of the exotic Harmonia axyridis compared with Hippodamia variegata, and Adalia bipunctata (Col., Coccinellidae). J Appl Entomol 128:298–306. doi:10.1111/j.1439-0418.2004.00847.x CrossRefGoogle Scholar
  24. Lövei GL, Arpaia S (2005) The impact of transgenic plants on natural enemies: a critical review of laboratory studies. Entomol Exp Appl 114:1–14. doi:10.1111/j.0013-8703.2005.00235.x CrossRefGoogle Scholar
  25. Lundgren JG, Wiedenmann RN (2002) Coleopteran-specific Cry3Bb toxin from transgenic corn pollen does not affect the fitness of a nontarget species, Coleomegilla maculata DeGeer (Coleoptera: Coccinellidae). Environ Entomol 31:1213–1218CrossRefGoogle Scholar
  26. Lundgren JG, Razzak AA, Wiedenmann RN (2004) Population responses and food consumption by predators Coleomegilla maculata and Harmonia axyridis (Coleoptera: Coccinellidae) during anthesis in an Illinois cornfield. Environ Entomol 33:958–963Google Scholar
  27. Lundgren JG, Huber A, Wiedenmann RN (2005) Quantification of consumption of corn pollen by the predator Coleomegilla maculata (Coleoptera: Coccinellidae) during anthesis in an Illinois cornfield. Agr Forest Entomol 7:53–60. doi:10.1111/j.1461-9555.2005.00246.x CrossRefGoogle Scholar
  28. Mendelsohn M, Kough J, Vaituzis Z, Matthews K (2003) Are Bt crops safe? Nat Biotechnol 9:1003–1009. doi:10.1038/nbt0903-1003 CrossRefGoogle Scholar
  29. Obrist LB, Dutton A, Albajes R, Bigler F (2006) Exposure of arthropod predators to Cry1Ab toxin in Bt maize fields. Ecol Entomol 31:143–154. doi:10.1111/j.0307-6946.2006.00762.x CrossRefGoogle Scholar
  30. Obrycki JJ, Kring TJ (1998) Predaceous Coccinellidae in biological control. Annu Rev Entomol 43:295–321. doi:10.1146/annurev.ento.43.1.295 CrossRefGoogle Scholar
  31. O’Callaghan M, Glare TR, Burgess EPJ, Malone LA (2005) Effects of plants genetically modified for insect resistance on nontarget organisms. Annu Rev Entomol 50:271–292. doi:10.1146/annurev.ento.50.071803.130352 CrossRefGoogle Scholar
  32. Omkar, Pervez A (2005) Ecology of two-spotted ladybird, Adalia bipunctata: a review. J Appl Entomol 129:465–474. doi:10.1111/j.1439-0418.2005.00998.x
  33. Raps A, Kehr J, Gugerli P, Moar WJ, Bigler F, Hilbeck A (2001) Immunological analysis of phloem sap of Bacillus thuringiensis corn and of the nontarget herbivore Rhopalosiphum padi (Homoptera: Aphididae) for the presence of Cry1Ab. Mol Ecol 10:525–533. doi:10.1046/j.1365-294x.2001.01236.x CrossRefGoogle Scholar
  34. Romeis J, Meissle M, Bigler F (2006) Transgenic crops expressing Bacillus thuringiensis toxins and biological control. Nat Biotechnol 24:63–71. doi:10.1038/nbt1180 CrossRefGoogle Scholar
  35. Rosi-Marshall EJ, Tank JL, Royer TV, Whiles MR, Evans-White M, Chambers C, Griffiths NA, Pokelsek J, Stephen ML (2007) Toxins in transgenic crop byproducts may affect headwater stream ecosystems. Proc Natl Acad Sci USA 104:16204–16208. doi:10.1073/pnas.0707177104 CrossRefGoogle Scholar
  36. SAS Institute Inc (2002) JMP user’s guide, version 5. SAS Institute, Cary, NCGoogle Scholar
  37. Schmidt JEU (2006) The influence of transgenic plants expressing Bacillus thuringiensis ∂-endotoxins on arthropod diversity and trophic interactions in crop ecosystems. Ph.D. dissertation. ETH, ZurichGoogle Scholar
  38. Shelton AM, Zhao JZ, Roush RT (2002) Economic, ecological, food safety, and social consequences of the deployment of Bt transgenic plants. Ann Revu Entomol 47:845–881. doi:10.1146/annurev.ento.47.091201.145309 CrossRefGoogle Scholar
  39. Whalon ME, Wingerd BA (2003) Bt: mode of action and use. Arch Insect Biochem 54:200–211. doi:10.1002/arch.10117 CrossRefGoogle Scholar
  40. Zhang GF, Wan FH, Guo JY, Hou ML (2004) Expression of Bt toxin in transgenic Bt cotton and its transmission through pests Helicoverpa armigera and Aphis gossypii to natural enemy Propylaea japonica in cotton plots. Acta Entomol Sinica 47:334–341Google Scholar
  41. Zhang GF, Wan FH, Lövei GL, Liu WX, Guo JY (2006) Transmission of Bt toxin to the predator Propylaea japonica (Coleoptera: Coccinellidae) through its aphid prey feeding on transgenic Bt cotton. Environ Entomol 35:143–150. doi:10.1603/0046-225X(2006)35[1232:EABROD]2.0.CO;2 CrossRefGoogle Scholar
  42. Zwahlen C, Andow DA (2005) Field evidence for the exposure of ground beetles to Cry1Ab from transgenic corn. Environ Biosafe Res 4:1–5. doi:10.1051/ebr:2005014 Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Jörg E. U. Schmidt
    • 1
  • Cora U. Braun
    • 1
  • Lisa P. Whitehouse
    • 1
  • Angelika Hilbeck
    • 1
    • 2
  1. 1.Institute of Integrative BiologyETH ZurichZurichSwitzerland
  2. 2.Department of Environmental Sciences, Institute of Integrative BiologyETH ZurichZurichSwitzerland

Personalised recommendations