Advertisement

Polycyclic Aromatic Hydrocarbons in Urban Street Dust and Surface Soil: Comparisons of Concentration, Profile, and Source

  • De-Gao WangEmail author
  • Meng Yang
  • Hong-Liang Jia
  • Lei Zhou
  • Yi-Fan LiEmail author
Article

Abstract

Street dust and surface soil samples in urban areas of Dalian, a coastal city in Liaoning Province, China, were collected and analyzed for 25 polycyclic aromatic hydrocarbons (PAHs). The concentrations, distribution, and sources of PAHs in dust and soil were determined. The concentrations of total PAHs in street dust ranged between 1890 and 17,070 ng/g (dry weight), with an average of 7460 ng/g, whereas the concentrations of total PAHs in surface soil varied greatly, from 650 to 28,900 ng/g, with a mean value of 6440 ng/g. Statistical paired t-test confirmed that total PAH concentrations have no significant difference between street dust and surface soil. Mean PAH concentrations in two type samples were much higher at industrial sites than at business/residential or garden sites. PAHs were dominated by higher molecular weight PAH (4- to 6-ring) homologues, which accounted for about 73% and 72% of total PAHs in street dust and surface soil, respectively. Principal component analysis was used in source apportionment of PAHs in dust and soil. Pyrogenic and petrogenic sources contributed 70% and 22.4% of total PAHs in street dusts, and fossil fuel (coal and petroleum) and biomass combustion accounted for 64.4% and 5.6% of total PAHs in pyrogenic sources, respectively. In surface soil, total PAHs were dominated by pyrogenic sources. The diagnostic ratios of benz[a]anthracene/chrysene confirmed that PAHs in street dust and surface soil of a Dalian urban zone might come mostly from the emission of local sources.

Keywords

Dust PAHs Dust Sample Street Dust Total Organic Carbon Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was funded by Dalian Maritime University, Teaching and Research Award Program for Outstanding Young Teachers (DLMU-ZL-200704), and Key Laboratory of Marine Spill Oil Identification and Damage Assessment Technology.

References

  1. Boonyatumanond R, Wattayakorn G, Togo A, Takada H (2006) Distribution and origins of polycyclic aromatic hydrocarbons (PAHs) in riverine, estuarine, and marine sediments in Thailand. Mar Pollut Bull 52:942–956 doi:  10.1016/j.marpolbul.2005.12.015 CrossRefGoogle Scholar
  2. Boonyatumanond R, Murakami M, Wattayakorn G, Togo A, Takada H (2007) Sources of polycyclic aromatic hydrocarbons (PAHs) in street dust in a tropical Asian mega-city, Bangkok, Thailand. Sci Total Environ 384:420–432 doi: 10.1016/j.scitotenv.2007.06.046 CrossRefGoogle Scholar
  3. Bucheli TD, Blum F, Desaules A, Gustafsson O (2004) Polycyclic aromatic hydrocarbons, black carbon, and molecular markers in soils of Switzerland. Chemosphere 56:1061–1076 doi:  10.1016/j.chemosphere.2004.06.002 CrossRefGoogle Scholar
  4. Cai Q-Y, Mo C-H, Li Y-H, Zeng Q-Y, Katsoyiannis A, Wu Q-T, Ferard J-F (2007) Occurrence and assessment of polycyclic aromatic hydrocarbons in soils from vegetable fields of the Pearl River Delta, South China. Chemosphere 68:159–168 doi:  10.1016/j.chemosphere.2006.12.015 CrossRefGoogle Scholar
  5. Christensen ER, Bzdusek PA (2005) PAHs in sediments of the Black River and the Ashtabula River, Ohio: source apportionment by factor analysis. Water Res 39: 511–524 doi:  10.1016/j.watres.2004.11.016 CrossRefGoogle Scholar
  6. Esteve W, Budzinski H, Villenave E (2004) Relative rate constants for the heterogeneous reactions of OH, NO2 and NO radicals with polycyclic aromatic hydrocarbons adsorbed on carbonaceous particles. Part 1: PAHs adsorbed on 1–2 mm calibrated graphite particles. Atmos Environ 38:6063–6072 doi:  10.1016/j.atmosenv.2004.05.059 CrossRefGoogle Scholar
  7. Fraser MP, Cass GR, Simoneit BRT, Rasmussen RA (1998) Air quality model evaluation data for organics. 5. C6–C22 nonpolar and semipolar aromatic compounds. Environ Sci Technol 32:1760–1770 doi:  10.1021/es970349v CrossRefGoogle Scholar
  8. Hou XM, Zhuang GS, Sun YL, An ZS (2006) Characteristics and sources of polycyclic aromatic hydrocarbons and fatty acids in PM2.5 aerosols in dust season in China. Atmos Environ 40:3251–3262 doi:  10.1016/j.atmosenv.2006.02.003 CrossRefGoogle Scholar
  9. Kamens RM, Guo Z, Fulcher JN, Bell D (1988) The influence of humidity, sunlight, and temperature on the daytime decay of polyaromatic hydrocarbons on atmospheric soot particles. Environ Sci Technol 22:103–108 doi:  10.1021/es00166a012 CrossRefGoogle Scholar
  10. Kipopoulou AM, Manoli E, Samara C (1999) Bioconcentration of polycyclic aromatic hydrocarbons in vegetables grown in an industrial area. Environ Pollut 106:369–380 doi:  10.1016/S0269-7491(99)00107-4 CrossRefGoogle Scholar
  11. Larsen RK, Baker JE (2003) Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: a comparison of three methods. Environ Sci Technol 37:1873–1881 doi:  10.1021/es0206184 CrossRefGoogle Scholar
  12. Liu M, Cheng SB, Ou DN, Hou LJ, Gao L, Wang LL, Xie YS, Yang Y, Xu SY (2007) Characterization, identification of road dust PAHs in central Shanghai areas, China. Atmos Environ 41:8785–8795 doi:  10.1016/j.atmosenv.2007.07.059 CrossRefGoogle Scholar
  13. Mai BX, Qi SH, Zeng EY, Yang QS, Zhang G, Fu JM, Sheng GY, Peng PA, Wang ZS (2003) Distribution of polycyclic aromatic hydrocarbons in the coastal region off Macao, China: assessment of input sources and transport pathways using compositional analysis. Environ Sci Technol 37:4855–4863 doi:  10.1021/es034514k CrossRefGoogle Scholar
  14. Manoli E, Voutsa D, Samara C (2002) Chemical characterization and source identification/apportionment of fine and coarse air particles in Thessaloniki, Greece. Atmos Environ 36:949–961 doi:  10.1016/S1352-2310(01)00486-1 CrossRefGoogle Scholar
  15. Manoli E, Kouras A, Samara C (2004) Profile analysis of ambient and source emitted particle-bound polycyclic aromatic hydrocarbons from three sites in northern Greece. Chemosphere 56:867–878 doi:  10.1016/j.chemosphere.2004.03.013 CrossRefGoogle Scholar
  16. Morillo E, Romero AS, Maqueda C, Madrid L, Ajmone-Marsan F, Grcman H, Davidson CM, Hursthouse AS, Villaverde J (2007) Soil pollution by PAHs in urban soils: a comparison of three European cities. J Environ Monit 9:1001–1008 doi:  10.1039/b705955h CrossRefGoogle Scholar
  17. Murakami M, Nakajima F, Furumai H (2005) Size- and density-distributions and sources of polycyclic aromatic hydrocarbons in urban road dust. Chemosphere 61:783–791 doi:  10.1016/j.chemosphere.2005.04.003 CrossRefGoogle Scholar
  18. Ockenden W, Breivik K, Meijer S, Steinnes E, Sweetman A, Jones K (2003) The global re-cycling of persistent organic pollutants is strongly retarded by soils. Environ Pollut 121:75–80 doi:  10.1016/S0269-7491(02)00204-X CrossRefGoogle Scholar
  19. Ramdahl T (1983) Retene—a molecular marker of wood combustion in ambient air. Nature 306:580–582 doi:  10.1038/306580a0 CrossRefGoogle Scholar
  20. Rogge WF, Hildemann LM, Mazurek MA, Cass GR, Simoneit BRT (1993) Sources of fine organic aerosol. 3. Road dust, tire debris, and organometallic brake lining dust: roads as sources and sinks. Environ Sci Technol 27:1892–1904 doi:  10.1021/es00046a019 CrossRefGoogle Scholar
  21. Senesi N (1992) Binding mechanisms of pesticides to humic soil substances. Sci Total Environ 123–124:63–76 doi:  10.1016/0048-9697(92)90133-D Google Scholar
  22. Simcik MF, Eisenreich SJ, Lioy PJ (1999) Source apportionment and source/sink relationships of PAHs in the coastal atmosphere of Chicago and Lake Michigan. Atmos Environ 33:5071–5079 doi:  10.1016/S1352-2310(99)00233-2 CrossRefGoogle Scholar
  23. Soclo HH, Garrigues P, Ewald M (2000) Origin of polycyclic aromatic hydrocarbons (PAHs) in coastal marine sediments: case studies in Cotonou (Benin) and Aquitaine (France) areas. Mar Pollut Bull 40:387–396 doi:  10.1016/S0025-326X(99)00200-3 CrossRefGoogle Scholar
  24. Takada H, Onda T, Ogura N (1990) Determination of polycyclic aromatic hydrocarbons in urban street dusts and their source materials by capillary gas chromatography. Environ Sci Technol 24:1179–1186 doi:  10.1021/es00078a005 CrossRefGoogle Scholar
  25. Tamamura S, Sato T, Ota Y, Wang X, Tang N, Hayakawa K (2007) Long-range transport of polycyclic aromatic hydrocarbons (PAHs) from the eastern Asian continent to Kanazawa, Japan, with Asian dust. Atmos Environ 41:2580–2593 doi:  10.1016/j.atmosenv.2006.11.021 CrossRefGoogle Scholar
  26. Tao S, Cui YH, Xu FL, Li BG, Cao J, Liu WX, Schmitt G, Wang XJ, Shen WR, Qing BP, Sun R (2004) Polycyclic aromatic hydrocarbons (PAHs) in agricultural soil and vegetables from Tianjin. Sci Total Environ 320:11–24 doi:  10.1016/S0048-9697(03)00453-4 CrossRefGoogle Scholar
  27. Wang Z, Fingas M, Page DS (1999a) Oil spill identification. J Chromatogr A 843:369–411 doi:  10.1016/S0021-9673(99)00120-X CrossRefGoogle Scholar
  28. Wang Z, Fingas M, Shu YY, Sigouin L, Landriault M, Lambert P, Turpin R, Campagna P, Mullin J (1999b) Quantitative characterization of PAHs in burn residue and soot samples and differentiation of pyrogenic PAHs from petrogenic PAHs—the 1994 mobile burn study. Environ Sci Technol 33:3100–3109 doi:  10.1021/es990031y CrossRefGoogle Scholar
  29. Wang Z, Chen J, Qiao X, Yang P, Tian F, Huang L (2007) Distribution and sources of polycyclic aromatic hydrocarbons from urban to rural soils: a case study in Dalian, China. Chemosphere 68:965–971 doi:  10.1016/j.chemosphere.2007.01.017 CrossRefGoogle Scholar
  30. Wilcke W (2000) Polycyclic aromatic hydrocarbons (PAHs) in soil: a review. J Plant Nutr Soil Sci 163:229–248 doi:  10.1002/1522-2624(200006)163:3 ≤ 229::AID-JPLN229 ≥ 3.0.CO;2-6 CrossRefGoogle Scholar
  31. Wilcke W (2007) Global patterns of polycyclic aromatic hydrocarbons (PAHs) in soil. Geoderma 141:157–166 doi:  10.1016/j.geoderma.2007.07.007 CrossRefGoogle Scholar
  32. Wild SR, Jones KC (1995) Polynuclear aromatic hydrocarbons in the United Kingdom environment: a preliminary source inventory and budget. Environ Pollut 88:91–108 doi:  10.1016/0269-7491(95)91052-M CrossRefGoogle Scholar
  33. Yunker MB, Macdonald RW (2003) Alkane and PAH depositional history, sources and fluxes in sediments from the Fraser River Basin and Strait of Georgia, Canada. Org Geochem 34:1429–1454 doi:  10.1016/S0146-6380(03)00136-0 CrossRefGoogle Scholar
  34. Yunker MB, Macdonald RW, Vingarzan R, Mitchell RH, Goyette D, Sylvestre S (2002) PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem 33:489–515 doi:  10.1016/S0146-6380(02)00002-5 CrossRefGoogle Scholar
  35. Zhang HB, Luo YM, Wong MH, Zhao QG, Zhang GL (2006) Distributions and concentrations of PAHs in Hong Kong soils. Environ Pollut 141:107–114 doi:  10.1016/j.envpol.2005.08.031 CrossRefGoogle Scholar
  36. Zheng M, Fang M (2000) Particle-associated polycyclic aromatic hydrocarbons in the atmosphere of Hong Kong. Water Air Soil Pollut 117:175–189 doi:  10.1023/A:1005169718072 CrossRefGoogle Scholar
  37. Zohair A, Salim A-B, Soyibo AA, Beck AJ (2006) Residues of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides in organically-farmed vegetables. Chemosphere 63:541–553 doi:  10.1016/j.chemosphere.2005.09.012 CrossRefGoogle Scholar
  38. Zuo Q, Duan YH, Yang Y, Wang XJ, Tao S (2007) Source apportionment of polycyclic aromatic hydrocarbons in surface soil in Tianjin, China. Environ Pollut 147:303–310 doi:  10.1016/j.envpol.2006.05.029 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.International Joint Research Center for Persistent Toxic SubstancesDalian Maritime UniversityDalianPeople’s Republic of China
  2. 2.Science and Technology BranchEnvironment CanadaTorontoCanada

Personalised recommendations