Advertisement

Heavy Metals in the Nase, Chondrostoma nasus (L. 1758), and Its Intestinal Parasite Caryophyllaeus laticeps (Pallas 1781) from Austrian Rivers: Bioindicative Aspects

  • Franz JirsaEmail author
  • Monika Leodolter-Dvorak
  • Regina Krachler
  • Christa Frank
Article

Abstract

Tissue samples from 121 adult specimens of the predominantly herbivorous fish species nase, Chondrostoma nasus (L. 1758), from five river sites in Austria were analyzed for their metal content. Sediments and water samples of the sites show different levels of metal load, with only one site considered being polluted with metals. The concentrations of cadmium, copper, lead, and zinc in the tissue of the gills, muscle, intestine, and liver of the fish were determined by inductively coupled plasma–optical emission spectrometry (ICP-OES). As in one of the unpolluted and the polluted river site, a well-established population of the tapeworm Caryophyllaeus laticeps (Pallas, 1781) occurred in the intestine of the fish; pooled samples of this worm were analysed as well. Both the nase and C. laticeps show bioindicative ability for metal pollution in rivers. The results allow a more differentiated characterization of the rivers than the sediment analyses. Cadmium is found mainly in the liver, with maximum concentrations of 1.57 μg/g dry weight from unpolluted sites and 5.58 μg/g from the polluted site. The highest concentrations of copper are also found in the liver, with values between 25 and 333 μg/g. A significantly elevated concentration of Cu in the intestine from an “unpolluted” site (mean: 24.06 μg/g) indicates an acute pollution in this area at the time of sampling. Lead was found mainly in the intestine and liver in concentrations between 0.09 and 4.05 μg/g and 0.26 and 1.94 μg/g, respectively. In the samples from the polluted site, it also could be detected in the gills (mean: 1.38 μg/g). The parasite C. laticeps shows different capacities for metal accumulation: Although the concentrations of Cu were significantly lower compared to the values of the fish liver, cadmium was detected in concentrations up to 5.1 times higher. Lead and zinc concentrations were found to be up to 9.7 and 3.0 times higher in the tapeworm compared to the fish liver, respectively.

Keywords

Fish Tissue Intestinal Parasite Hydroelectric Power Plant Unpolluted Site Austrian River 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Our sincere thanks are extended to Mag. Gerald Kerschbaumer, Mag. Nikolaus Schotzko, Gerhard Woschitz, Dr. Gerald Zauner, and Dr. Andreas Zitek and their crews for their effort in providing the fish samples, as well as to the local fishery authorities for authorizing the catch.

References

  1. Adeyeye E (1994) Determination of trace heavy metals in Illisha africana fish and in associated water and soil sediments from some fish ponds. Int J Environ Stud 45(3–4):231–238CrossRefGoogle Scholar
  2. Badsha KS, Goldspink CR (1982) Preliminary observations on the heavy metal content of four species of freshwater fish in NW England. J Fish Biol 21(3):251–267CrossRefGoogle Scholar
  3. Barranguet C, Charantoni E, Plans M, Admiraal W (2000) Short-term response of monospecific and natural biofilms to copper exposure. Eur J Phycol 35:397–406CrossRefGoogle Scholar
  4. BAW (2007) Wassergüteerhebung in Österreich gemäß WGEV. Bundesamt für Wasserwirtschaft, WienGoogle Scholar
  5. BMLFUW (2003) Wassergüte in Österreich, Jahresbericht 2002. Bundesministerium für Land- Forstwirtschaft, Umwelt und Wasserwirtschaft, WienGoogle Scholar
  6. BMLFUW (2005) Wassergüte in Österreich, Jahresbericht 2004. Bundesministerium für Land- Forstwirtschaft, Umwelt und Wasserwirtschaft, WienGoogle Scholar
  7. BMLFUW (2006) Wassergüte in Österreich, Jahresbericht 2006. Bundesministerium für Land- Forstwirtschaft, Umwelt und Wasserwirtschaft, WienGoogle Scholar
  8. Brumbaugh WG, Schmitt CJ, May TW (2005) Concentrations of cadmium, lead, and zinc in fish from mining-influenced waters of Northeastern Oklahoma: Sampling of blood, carcass, and liver for aquatic biomonitoring. Arch Environ Contam Toxicol 49:76–88CrossRefGoogle Scholar
  9. Bury NR, Walker PA, Glover CN (2003) Nutritive metal uptake in teleost fish. J Exp Biol 206:11–23CrossRefGoogle Scholar
  10. Bykhovskaya-Pavlovskaya IE, Gusev AV, Dubinina MN et al (1964) Key to parasites of freshwater fish of the USSR. Israel Program for Scientific Translation, JerusalemGoogle Scholar
  11. Dallinger R (1986) Schwermetalle in limnischen Nahrungsketten. Österreichs Fischerei 39:281–293Google Scholar
  12. Dallinger R, Kautzky H (1985) The importance of contaminated food for the uptake of heavy metals by rainbow trout (Salmo gairdneri): a field study. Oecologia 67:82–89CrossRefGoogle Scholar
  13. Dallinger R, Prosi F, Segner H, Back H (1987) Contaminated food and uptake of heavy metals by fish: a review and a proposal for further research. Oecologia 73:90–98CrossRefGoogle Scholar
  14. Draves JF, Fox MG (1998) Effects of a mine tailings spill on feeding and metal concentrations in yellow perch (Perca flavescens). Environ Toxicol Chem 17(8):1626–1632CrossRefGoogle Scholar
  15. Ennskraft (2007) Available from http://www.ennskraft.at
  16. Farag AM, Woodward DF, Goldstein JN, Brumbaugh W, Meyer JS (1998) Concentrations of metals associated with mining waste in sediments, biofilm, benthic macroinvertebrates, and fish from the Coeur d´Alene River basin, Idaho. Arch Environ Contam Toxicol 34(2):119–127CrossRefGoogle Scholar
  17. Gerstmeier R, Roming T (2003) Die Süßwasserfische Europas. Frankh-Kosmos Verlag, StuttgartGoogle Scholar
  18. Has-Schön E, Bogut I, Kralik G, Bogut S, Horvatić J, Ćačić I (2007) Heavy metal concentration in fish tissues inhabiting waters of “Buško Blato” reservoir (Bosnia and Herzegowina). Environ Monit Assess. doi:10.1007/s10661-007-9627-0Google Scholar
  19. Haunschmid R, Wolfram G, Spindler T et al (2006) Erstellung einer fischbasierten Typologie sowie einer Bewertungsmethode des fischökologischen Zustandes gemäß EU-Wasserrahmenrichtlinie. Schriftenreihe des Bundesamtes für Wasserwirtschaft, Band 23, WienGoogle Scholar
  20. Hofer R, Lackner R (1995) Fischtoxikologie. Gustav Fischer Verlag, JenaGoogle Scholar
  21. Hoole D, Bucke D, Burgess P, Wellby I (2001) Diseases of carp and other cyprinid fishes. Fishing New Books, OxfordGoogle Scholar
  22. Jirsa F, Konecny R, Frank C (2008) The occurrence of Caryophyllaeus laticeps (Pallas 1781) in the nase Chondrostoma nasus (L. 1758) from Austrian rivers: Possible anthropogenic factors. J Helminthol 82:53–58CrossRefGoogle Scholar
  23. Keckeis H (2001) Reproduction and early life history of the rheophilic cyprinid Chondrostoma nasus (L.), Habilitationsschrift, Universität WienGoogle Scholar
  24. Kennedy CR (1997) Freshwater fish parasites and environmental quality: an overview and caution. Parassitologia 39(3):249–254Google Scholar
  25. Lang E (1993) Gewässerbetreuungskonzept Lafnitz. Amt der Burgenländischen Landesregierung, WienGoogle Scholar
  26. Lucas HF, Edington DN, Colby PI (1970) Concentrations of trace elements in Great Lake Fishes. J Fish Res Bd Can 27:677–684Google Scholar
  27. Messner B (1989) Schwermetalle in den Fischen einiger Kärntner Gewässer. PhD thesis, Karl Franzens Universität, GrazGoogle Scholar
  28. National Park Donau Auen (2007) Available from http://www.donauauen.at/html/english/index.html
  29. Reckendorfer W, Keckeis H, Tiitu G, Winkler G, Zornig H, Schiemer F (2001) Diet shift in 0+ nase Chondrostoma nasus: size-specific differences and the effect of food availability. Large Rivers 12(2–4); Arch Hydrobiol 135(Suppl 2–4):425–440Google Scholar
  30. Reichenbach-Klinke HH (1974) Der Süßwasserfisch als Nährstoffquelle und Umweltindikator. Gustav Fisch Verlag, StuttgartGoogle Scholar
  31. Schäperclaus W (1990) Fischkrankheiten, 5th edn. Akademie Verlag, BerlinGoogle Scholar
  32. Schiemer F, Spindler T (1989) Endangered fish species of the Danube River in Austria. Regul Rivers: Res Manage 4:397–407CrossRefGoogle Scholar
  33. Schludermann C, Konecny R, Laimgruber S et al (2003) Fish macroparasites as indicators of heavy metal pollution in river sites in Austria. Parasitology 126(Suppl):61–69CrossRefGoogle Scholar
  34. Sures B, Reimann N (2003) Analyses of trace metals in the Antarctic host–parasites system Notothenia coriiceps and Aspersentis megarhynchus (Acanthopcephala) caught at King Georg Island, South Shetland Islands. Polar Biol 26:380–686CrossRefGoogle Scholar
  35. Sures B, Sidall R (2003) Pomphorhynchus laevis (Palaeacantocephala) in the intestine of chub (Leuciscus cephalus) as an indicator of metal pollution. Int J Parasitol 33:65–70CrossRefGoogle Scholar
  36. Sures B, Taraschewski H, Jackwerth E (1994) Lead accumulation in Pomphorhynchus laevis and its host. J Parasitol 80:355–357CrossRefGoogle Scholar
  37. Sures B, Steiner W, Rydlo M, Taraschewski H (1999) Concentrations of 17 elements in the zebra mussel (Dreissena polymorpha), in different tissues of perch (Perca fluviatilis), and in perch intestinal parasites (Acanthocephalus lucii) from the subalpine lake Mondsee, Austria. Eviron Toxicol Chem 18(11):2574–2579CrossRefGoogle Scholar
  38. Sures B, Taraschewski H, Siddall R (1997) Heavy metal concentrations in adult acanthocephalans and cestodes compared to their fish hosts and to established free-living bioindicators. Parasitologia 39:213–218Google Scholar
  39. Tabernig C (2003) Entwicklung eines GIS-basierenden Fischverbreitungsatlasses österreichischer Fließgewässer anhand der nationalen Datenbank „HaFiDat.“. Diplomarbeit, Universität für Bodenkultur, WienGoogle Scholar
  40. Tenora F, Barus V, Kracmar S, Doracek J (2000) Concentrations of some heavy metals in Ligula intestinalis plerocercoids (Cestoda) and Philometra ovata (Nematoda) compared to some their hosts (Osteichthyes). Helminthologia 37(1):15–18Google Scholar
  41. Wachs B (1982) Die Bioindikation von Schwermetallen in Fließgewässern, Münch. Beitr Abwasser Fisch Flussbiol 34:301–337Google Scholar
  42. Wong MH (1987) A review on lead contamination of Hong Kong´s environment. In: Hutchinson TC (ed) Lead, mercury, cadmium and arsenic in the environment. Wiley, London, pp 217–232Google Scholar
  43. Woschitz G (1996) Die Fisch-Fauna der Lafnitz. Naturschutzbrief 169. Landesgruppe Steiermark des österreichischen Naturschutzbundes, GrazGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Franz Jirsa
    • 1
    • 2
    Email author
  • Monika Leodolter-Dvorak
    • 3
  • Regina Krachler
    • 1
  • Christa Frank
    • 2
  1. 1.Institute of Inorganic ChemistryUniversity of ViennaViennaAustria
  2. 2.Department of Evolutionary Biology, EF Molecular PhylogeneticsUniversity of ViennaViennaAustria
  3. 3.Institute of Analytical Chemistry and Food ChemistryUniversity of ViennaViennaAustria

Personalised recommendations