The Effects of Microbial Materials Adhered to Asian Sand Dust on Allergic Lung Inflammation

  • T. Ichinose
  • S. Yoshida
  • K. Hiyoshi
  • K. Sadakane
  • H. Takano
  • M. Nishikawa
  • I. Mori
  • R. Yanagisawa
  • H. Kawazato
  • A. Yasuda
  • T. Shibamoto
Article

Abstract

Asian sand dust (ASD) containing microbiological materials, sulfate (SO 4 2 ), and nitrate (NO 3 ) derived from air pollutants in East China, reportedly cause adverse respiratory health effects. ASD aggravates ovalbumin (OVA)-associated experimental lung eosinophilia. In this study, the toxic materials adsorbed onto ASD were excluded by heat treatment at 360°C for 30 min. The effects of nonheated ASD or heated ASD (H-ASD) toward the allergic lung inflammation were compared in murine lungs. ICR mice were administered intratracheally with normal saline (control), H-ASD, ASD, OVA, OVA + H-ASD, and OVA + ASD, four times at 2-week intervals. ASD only increased neutrophils in bronchoalveolar lavage fluids (BALFs) along with pro-inflammatory mediators, such as keratinocyte chemoattractant (KC). H-ASD and ASD enhanced eosinophil recruitment induced by OVA in the alveoli and in the submucosa of the airway, which has a goblet cell proliferation in the bronchial epithelium. The two ASDs synergistically increased interleukin-5 (IL-5), monocyte chemotactic protein-3 (MCP-3), and eotaxin, which were associated with OVA, in BALF. The enhancing effects were much greater in ASD than in H-ASD. The two ASDs induced the adjuvant effects to specific IgE and IgG1 production by OVA. In the in vitro study using RAW264.7 cells, ASD increased the expression of Toll-like receptor 2 (TLR 2) mRNA but not TLR4 mRNA. H-ASD caused no expression of either TLR mRNA. These results suggest that the aggravated lung eosinophilia by ASD may be due to activation of Th2-associated immune response via the activation of TLR2 by microbial components adhered to ASD.

Notes

Acknowledgments

This study was supported in part by a grant from the Ministry of Education, Science, and Culture of Japan and by the Environmental Agency of Japan.

References

  1. Adamthwaite D, Cooley MA (1994) CD8+ T-cell subsets defined by expression of CD45 isoforms differ in their capacity to produce IL-2, IFN-gamma and TNF-beta. Immunology 81:253–260Google Scholar
  2. Akahoshi T, Endo H, Kondo H, Kashiwazaki S, Kasahara T, Mukaida N, Harada A, Matsushima K (1994) Essential involvement of interleukin-8 in neutrophil recruitment in rabbits with acute experimental arthritis induced by lipopolysaccharide and interleukin-1. Lymphokine Cytokine Res 13:113–116Google Scholar
  3. Beutler B (2002) TLR4 as the mammalian endotoxin sensor. Curr Top Microbiol Immunol 27:109–120Google Scholar
  4. Beutler B (2004) Inferences, questions and possibilities in Toll-like receptor signalling. Nature 430(6996):257–263CrossRefGoogle Scholar
  5. Chang CC, Lee IM, Tsai SS, Yang CY (2006) Correlation of Asian dust storm events with daily clinic visits for allergic rhinitis in Taipei, Taiwan. J Toxicol Environ Health A 69:229–235CrossRefGoogle Scholar
  6. Chen YS, Yang CY (2005) Effects of Asian dust storm events on daily hospital admissions for cardiovascular disease in Taipei, Taiwan. J Toxicol Environ Health A 68:1457–1464CrossRefGoogle Scholar
  7. Chen YS, Sheen PC, Chen ER, Liu YK, Wu TN, Yang CY (2004) Effects of Asian dust storm events on daily mortality in Taipei, Taiwan. Environ Res 95:151–155CrossRefGoogle Scholar
  8. Choi JC, Lee M, Chun Y, Kin J, Oh S (2001) Chemical composition and source signature of spring aerosol in Seoul. Kor J Geophys Res 106:18067–18074CrossRefGoogle Scholar
  9. D'Andrea A, Ma X, Aste-Amezaga M, Paganin C, Trinchieri G (1995) Stimulatory and inhibitory effects of interleukin (IL)-4 and IL-13 on the production of cytokines by human peripheral blood mononuclear cells: priming for IL-12 and tumor necrosis factor alpha production. J Exp Med 181:537–546CrossRefGoogle Scholar
  10. Duce AR, Unni CK, Ray BJ, Prospero JM, Merrill JT (1980) Long-range atmospheric transport of soil dust from Asia to the tropical North Pacific: temporal variability. Science 209:1522–1524CrossRefGoogle Scholar
  11. Dunzendorfer S, Kaneiderm NC, Kaser A, Woell E, Frade JM, Mellado M, Martinez-Alonso C, Wiedermann CJ (2001) Functional expression of chemokine receptor 2 by normal human eosinophils. J Allergy Clin Immunol 108:581–587CrossRefGoogle Scholar
  12. Eisenbarth SC, Piggott DA, Huleatt JW, Visintin I, Herrick CA, Bottomly K (2002) Lipopolysaccharide-enhanced, toll-like receptor 4-dependent T helper cell type 2 responses to inhaled antigen. J Exp Med 196:1645–1651CrossRefGoogle Scholar
  13. Ernst H, Rittinghausen S, Bartsch W, Creutzenberg O, Dasenbrock C, Gorlitz BD, Hecht M, Kairies U, Muhle H, Muller M, Heinrich U, Pott F (2002) Pulmonary inflammation in rats after intratracheal instillation of quartz, amorphous SiO2, carbon black, and coal dust and the influence of poly-2-vinylpyridine-N-oxide (PVNO). Exp Toxicol Pathol 54:109–126CrossRefGoogle Scholar
  14. Foster PS, Hogan SP, Ramsay AJ, Matthaei KI, Young IG (1996) Interleukin 5 deficiency abolishes eosinophilia, airway hyperreactivity, and lung damage in a mouse asthma model. J Exp Med 183:195–201CrossRefGoogle Scholar
  15. Gleich GJ (1990) The eosinophil and bronchial asthma: current understanding. J Allergy Clin Immunol 85:422–436CrossRefGoogle Scholar
  16. Hearn VM, Sietsma JH (1994) Chemical and immunological analysis of the Aspergillus fumigatus cell wall. Microbiology 140:789–795CrossRefGoogle Scholar
  17. Hiyoshi K, Ichinose T, Sadakane K, Takano H, Nishikawa M, Mori I, Yanagisawa R, Yoshida S, Kumagai Y, Tomura S, Shibamoto T (2005) Asian sand dust enhances ovalbumin-induced eosinophil recruitment in the alveoli and airway of mice. Environ Res 99:361–368CrossRefGoogle Scholar
  18. Hsieh CS, Macatonia SE, Tripp CS, Wolf SF, O'Garra A, Murphy KM (1993) Development of TH1 CD4+T cells through IL-12 produced by Listeria-induced macrophages. Science 260:47–49CrossRefGoogle Scholar
  19. Husar RB, Tratt DB, Schichtel BA, Falke SR, Li F, Jaffe D, Gasso S, Gill T, Laulainen NS, Lu F, Reheis MC, Chun Y, Westphal D, Holben BN, Gueymard C, McKendry I, Kuring N, Feldman GC, McClain C, Frouin RJ, Merrill J, DuBois D, Vigonola F, Sugimoto N, Malm WC (2001) Asian dust events of April 1998. J Geophys Res 106:18316–18330CrossRefGoogle Scholar
  20. Ichinose T, Takano H, Sadakane K, Yanagisawa R, Kawazato H, Sagai M, Shibamoto T (2003) Differences in airway-inflammation development by house dust mite and diesel exhaust inhalation among mouse strains. Toxicol Appl Pharmacol 187:29–37CrossRefGoogle Scholar
  21. Ichinose T, Nishikawa M, Takano H, Sera N, Sadakane K, Mori I, Yanagisawa R, Oda T, Tamura H, Hiyoshi K, Quan H, Tomura S, Shibamoto T (2005) Pulmonary toxicity induced by intratracheal instillation of Asian yellow dust (Kosa) in mice. Environ Toxicol Pharm 20:48–56CrossRefGoogle Scholar
  22. Ichinose T, Sadakane K, Takano H, Yanagisawa R, Nishikawa M, Mori I, Kawazato H, Yasuda A, Hiyoshi K, Shibamoto T (2006) Enhancement of mite allergen-induced eosinophil infiltration in the murine airway and local cytokine/chemokine expression by Asian sand dust. J Toxicol Environ Health A 69:1571–1585CrossRefGoogle Scholar
  23. James AC, Stahlhofen W, Rudolf G, Briant JK, Egan MJ, Nixon W, Birchall A, Annexe D (1994) Deposition of inhaled particles. In: International Commission on Radiological Protection (ICRP) Human Respiratory Tract Model for Radiological Protection. ICRP Publ 66. Ann ICRP 24(1/4). Pergamon Press, Oxford, UKGoogle Scholar
  24. Kim BG, Han JS, Park SU (2001) Transport SO2 and aerosol over the Yellow Sea. Atmos Environ 35:727–737CrossRefGoogle Scholar
  25. Kwon HJ, Cho SH, Chun Y, Lagarde F, Pershagen G (2002) Effects of the Asian dust events on daily mortality in Seoul, Korea. Environ Res 90:1–5CrossRefGoogle Scholar
  26. Liu W, Ernst JD, Courtney BV (2000) Phagocytosis of crocidolite asbestos induces oxidative stress, DNA damage, and apoptosis in mesothelial cells. Am J Respir Cell Mol Biol 23:371–378Google Scholar
  27. Mancino D, Ovary Z (1980) Adjuvant effects of amorphous silica and of aluminium hydroxide on IgE and IgG1 antibody production in different inbred mouse strains. Int Arch Allergy Appl Immunol 61:253–258Google Scholar
  28. Mancino D, Vuotto ML, Minucci M (1984) Effects of a crystalline silica on antibody production to T-dependent and T-independent antigens in Balb/c mice. Int Arch Allergy Appl Immunol 73:10–13Google Scholar
  29. Milligan PJM, Brabin B J (1998) Association of spatial distribution of childhood respiratory morbidity with environmental dust pollution. J Toxicol Environ Health A 55:169–184CrossRefGoogle Scholar
  30. Mori I, Nishikawa M, Tanimura T, Quan H (2003) Change in size distribution and chemical composition of Kosa (Asian dust) aerosol during long-range transport. Atmos Environ 37:4253–4263CrossRefGoogle Scholar
  31. Murphy SA, BeruBe KA, Pooley FD, Richards RJ (1998) The response of lung epithelium to well characterised fine particles. Life Sci 62:1789–1799CrossRefGoogle Scholar
  32. Nagase H, Yamaguchi M, Jibiki S, Yamada H, Ohta K, Kawasaki H, Yoshie O, Yamamoto K, Morita Y, Hirai K (1999) Eosinophil chemotaxis by chemokines: a study by a simple photometric assay. Allergy 54:944–950CrossRefGoogle Scholar
  33. Nikaido H (1969) Structure of cell wall lipopolysaccharide from Salmonella typhimurium. I. Linkage between o side chains and R core. J Biol Chem 244:2835–2845Google Scholar
  34. Nishikawa M, Quan H, Morita M (2000) Preparation and evaluation of certified reference materials for asian mineral dust. Global Environ Res 1:103–113Google Scholar
  35. Pan ZZ, Parkyn L, Ray A, Ray P (2000) Inducible lung-specific expression of RANTES: preferential recruitment of neutrophils. Am J Physiol Lung Cell Mol Physiol 279:L658–L666Google Scholar
  36. Quan H, Huang Y, Nishikawa M, Liu X, Mori I, Iwasaka Y, Wei Q, Qiao S (1996) Preparation of artificial kousa aerosol with two original desert sands. J Environ Chem 6:225–231Google Scholar
  37. Redecke V, Hacker H, Datta SK, Fermin A, Pitha PM, Broide DH, Raz E (2004) Cutting edge: activation of Toll-like receptor 2 induces a Th2 immune response and promotes experimental asthma. J Immunol 172:2739–2743Google Scholar
  38. Robinson DS, Ying S, Bentley AM, Meng Q, North J, Durham SR, Kay AB, Hamid Q (1993) Relationships among numbers of bronchoalveolar lavage cells expressing messenger ribonucleic acid for cytokines, asthma symptoms, and airway methacholine responsiveness in atopic asthma. J Allergy Clin Immunol 92:397–403CrossRefGoogle Scholar
  39. Romieu I, Meneses F, Ruiz S, Sienra JJ, Huerta J, White MC. Etzel RA (1996) Effects of air pollution on the respiratory health of asthmatic children living in Mexico City. Am J Respir Crit Care Med 154:300–307Google Scholar
  40. Rothenberg ME, MacLean JA, Pearlman E, Luster AD, Leder P (1997) Targeted disruption of the chemokine eotaxin partially reduces antigen-induced tissue eosinophilia. J Exp Med 185:785–790CrossRefGoogle Scholar
  41. Schins RP, Duffin R, Hohr D, Knaapen AM, Shi T, Weishaupt C, Stone V, Donaldson K, Borm PJ (2002) Surface modification of quartz inhibits toxicity, particle uptake, and oxidative DNA damage in human lung epithelial cells. Chem Res Toxicol 15:1166–1173CrossRefGoogle Scholar
  42. Schwandner R, Dziarski R, Wesche H, Rothe M, Kirschning CJ (1999) Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by toll- like receptor 2. J Biol Chem 274:17406–17409CrossRefGoogle Scholar
  43. Schwartz J, Slater T, Larson T, Pierson WE, Koenig JQ (1993) Particulate air pollution and hospital emergency room visits for asthma in Seatle. Am Rev Respir Dis 147:826–831Google Scholar
  44. Shinn EA, Griffin DW, Seba DB (2003) Atmospheric transport of mold spores in clouds of desert dust. Arch Environ Health 58:498–504Google Scholar
  45. Standiford TJ, Kunkel SL, Lukacs NW, Greenberger MJ, Danforth JM, Kunkel RG, Strieter RM (1995) Macrophage inflammatory protein-1 alpha mediates lung leukocyte recruitment, lung capillary leak, and early mortality in murine endotoxemia. J Immunol 155:1515–1524Google Scholar
  46. Yang CY (2006) Effects of Asian dust storm events on daily clinical visits for conjunctivitis in Taipei, Taiwan. J Toxicol Environ Health A 69:1673–1680CrossRefGoogle Scholar
  47. Yang CY, Tsai SS, Chang CC, Ho SC (2005) Effects of Asian dust storm events on daily admissions for asthma in Taipei, Taiwan. Inhal Toxicol 17:817–821CrossRefGoogle Scholar
  48. Yoshida S, Yoshida M, Sugawara I, Takeda K (2006) Mice strain differences in effects of fetal exposure to diesel exhaust gas on male gonadal differentiation. Environ Sci 13:117–123Google Scholar
  49. Young SH, Robinson VA, Barger M, Porter DW, Frazer DG, Castranova V (2001) Acute inflammation and recovery in rats after intratracheal instillation of a 1→3-beta-glucan (zymosan A). J Toxicol Environ Health A 64:311–325CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • T. Ichinose
    • 1
  • S. Yoshida
    • 1
  • K. Hiyoshi
    • 1
  • K. Sadakane
    • 1
  • H. Takano
    • 2
  • M. Nishikawa
    • 3
  • I. Mori
    • 3
  • R. Yanagisawa
    • 2
  • H. Kawazato
    • 4
  • A. Yasuda
    • 4
  • T. Shibamoto
    • 5
  1. 1.Department of Health SciencesOita University of Nursing and Health SciencesNotsuharuJapan
  2. 2.Pathophysiology Research TeamNational Institute for Environmental StudiesTsukubaJapan
  3. 3.Environmental Chemistry DivisionNational Institute for Environmental StudiesTsukubaJapan
  4. 4.Faculty of MedicineOita UniversityHasama-machiJapan
  5. 5.Department of Environmental ToxicologyUniversity of CaliforniaDavisUSA

Personalised recommendations