Predictability of Copper, Irgarol, and Diuron Combined Effects on Sea Urchin Paracentrotus lividus



The aim of this work was to investigate the mixture toxicity of Irgarol (2-methylthio-4-t-butylamino-6-cyclopropylamino-s-triazine), Diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea), and copper upon the sea urchin Paracentrotus lividus and to compare the observed data with the predictions derived from approaches of Concentration Addition (CA) and Independent Action (IA). Copper spermiotoxicity was more sensitive (EC50 = 0.018 mg/L) than embryotoxicity (EC50 = 0.046 mg/L). The offspring malformations were mainly P1 type (skeletal alterations) in both cases, probably because copper competes to fix Ca2+. Irgarol and Diuron toxicity has been previously investigated. EC50 mixture embryotoxicity showed an EC50 of 1.79 mg/L, whereas spermiotoxicity mixture effects were lower than 11%. Both CA and IA modeling approaches failed to predict accurately mixture toxicity. For embryotoxicity, the IA model overestimated the mixture toxicity at effect levels of <80%. CA does not represent the worst-case approach showing values lower than IA (embryotoxicity) or similar (spermiotoxicity).


Mixture toxicity Copper Irgarol Diuron Paracentrotus lividus 



We thank Prof. M. Vighi and Dr. A. Finizio for critical review of the manuscript and fruitful suggestions, and G. Zazo and co-workers at the Zoological Station of Naples for providing echinoids.


  1. Altenburger R, Backhaus T, Boedeker W, Faust M, Scholze M, Grimme LH (2000) Predictability of the toxicity of multiple chemical mixtures to Vibrio fischeri: Mixtures composed of similarly acting compounds. Environ Toxicol Chem 19:2341–2347CrossRefGoogle Scholar
  2. Altenburger R, Nendza M, Schuurmann G (2003) Mixture toxicity and its modeling by quantitative structure-activity relationships. Environ Toxicol Chem 22:1900–1915CrossRefGoogle Scholar
  3. Altenburger R, Walter H, Grote M (2004) What contributes to the combined effect of a complex mixture? Environ Sci Tech 38:6353–6362CrossRefGoogle Scholar
  4. Arrhenius A, Backhaus T, Grönvall F, Junghans M, Scholze M, Blanck H (2006) Effects of three antifouling agents on algal communities and algal reproduction: Mixture toxicity studies with TBT, Irgarol and Sea-Nine. Arch Environ Contam Toxicol 50:335–345CrossRefGoogle Scholar
  5. ASTM (American Society for Testing and Materials) (2004) Standard guide for conducting static acute toxicity tests with echinoid embryos. ASTM standard guide E 1563–98. In: Annual book of ASTM standards, section 11, Vol 11.5Google Scholar
  6. Backhaus T, Altenburger R, Boedeker W, Faust M, Scholze M, Grimme H (2000) Predictability of the toxicity of a multiple mixture of dissimilarly acting chemicals to Vibrio fischeri. Environ Toxicol Chem 19:2348–2356CrossRefGoogle Scholar
  7. Backhaus T, Altenburger R, Boedeker W, Faust M, Scholze M, Grimme LH (2000a) Predictability of the toxicity of a multiple mixture of dissimilarly acting chemicals to Vibrio fischeri. Environ Toxicol Chem 19:2348–2356Google Scholar
  8. Backhaus T, Scholze M, Grimme LH (2000b) The single substance and mixture toxicity of quinolones to the bioluminescent bacterium Vibrio fischeri. Aquat Toxicol 49:49–61Google Scholar
  9. Backhaus T (2004) Toxicity of a mixture of dissimilarly acting substances to natural algal communities: Predictive power and limitations of independent action and concentration addition. Environ Sci Technol 38:6363–6370CrossRefGoogle Scholar
  10. Barata C, Baird DJ, Nogueira AJA, Soares AMVM (2006) Toxicity of binary mixtures of metals and pyrethroid insecticides to Daphnia magna Straus. Implications for multi-substance risks assessment. Aquat Toxicol 78:1–14CrossRefGoogle Scholar
  11. Basheer C, Tan KS, Lee HK (2002) Organotin and Irgarol-1051 contamination in Singapore coastal waters. Mar Poll Bull 44:697–703CrossRefGoogle Scholar
  12. Bay S, Burgess R, Nacci D (1993) Status and applications of echinoid (phylum Echinodermata) toxicity test methods In: Landis WG, Hughes JS, Lewis MA (eds), Environmental toxicology risk assessment. ASTM STP 1179:281–302. American Society for Testing and Materials, Philadelphia, PennsylvaniaGoogle Scholar
  13. Bellas J, Beiras R, Mariño-Balsa JC, Fernández N (2005) Toxicity of organic compounds to marine invertebrate embryos and larvae: A comparison between the sea urchin embryogenesis bioassay and alternative test species. Ecotoxicology 14:335–351CrossRefGoogle Scholar
  14. Biselli S, Bester K, Huhnerfuss H, Fent K (2000) Concentrations of the antifouling compound Irgarol 1051 and of organotins in water and sediments of German North and Baltic Sea marinas. Mar Poll Bull 40:233–243CrossRefGoogle Scholar
  15. Bliss CI (1939) The toxicity of poisons applied jointly. Ann J Appl Biol 585–615Google Scholar
  16. Boedeker W, Drescher K, Altenburger R, Faust M, Grimme LH (1993) Combined effects of toxicants: The need and soundness of assessment approaches in ecotoxicology. Sci Total Environ (Suppl) 931–938Google Scholar
  17. Burgess RM, Schweitzer KA, McKinney RA, Phelps DK (1993) Contaminated marine sediments: Water column and interstitial toxic effects. Environ Toxicol Chem 12:127–138CrossRefGoogle Scholar
  18. Camakaris J, Voskoboinik I, Mercer JF (1999) Molecular mechanisms of copper homeostasis. Biochem Biophys Res Commun 261:225–232CrossRefGoogle Scholar
  19. Cavet JS, Borrelly GPM, Robinson NJ (2003) Zn, Cu and Co in cyanobacteria: Selective control of metal availability. FEMS Microbiol Rev 27:165–181CrossRefGoogle Scholar
  20. Cesar A, Marin A, Marin-Guirao L, Vita R (2004) Amphipod and sea urchin tests to assess the toxicity of Mediterranean sediments: The case of Portman Bay. Sci Mar 68:205–213Google Scholar
  21. Chesworth JC, Donkin ME, Brown MT (2004) The interactive effects of the antifouling herbicides Irgarol 1051 and Diuron on the seagrass Zostera marina (L.). Aquat Toxicol 6:293–305CrossRefGoogle Scholar
  22. Dinku W, Megersa N, Raju VJT, Solomon T, Jonsson JA, Retta N (2001) Studies on transition metal complexes of herbicidal compounds. II: Transition metal complexes of derivatized 2-chloro-4etrylamino-6-isopropylamino-s-triazine (atrazine). Bull Chem Soc Ethiopia 17:35–43Google Scholar
  23. Dinnel PA, Link JM, Stober QJ, Letorneau MW, Roberts WE (1989) Comparative sensitivity of sea urchin sperm bioassays to metals and pesticide toxicity tests. Arch Environ Contam Toxicol 18:748–755CrossRefGoogle Scholar
  24. Drescher K, Boedeker W (1995) Assessment of the combined effects of substances: The relationship between concentration addition and independent action. Biometrics 51:716–730CrossRefGoogle Scholar
  25. Dresher WH (2000) Copper in third-generation antifoulants for marine coatings. Available at: Scholar
  26. Faust M (1999) Combined effect of pollutants on aquatic organisms; verification of predictability using a mono-cellular green algae. University of Bremen, BremenGoogle Scholar
  27. Faust M, Altenburger R, Backhaus T, Boedeker W, Scholze M, Grimme LH (2000) Predictive assessment of the aquatic toxicity of multiple chemical mixtures. J Environ Qual 29:1063–1068CrossRefGoogle Scholar
  28. Faust M, Altenburger R, Backhaus T, Blanck H, Boedeker W, Gramatica P, Hamer V, Scholze M, Vighi M, Grimme LH (2001) Predicting the joint algal toxicity of multi-component s-triazine mixtures at low-effect concentrations of individual toxicants. Aquat Toxicol 56:13–32CrossRefGoogle Scholar
  29. Faust M, Altenburger R, Backhaus T, Blanck H, Boedeker W, Gramatica P, Hamer V, Scholze M, Vighi M, Grimmel LH (2003) Joint algal toxicity of 16 dissimilarly acting chemicals is predictable by the concept of independent action. Aquat Toxicol 63:43–63CrossRefGoogle Scholar
  30. Fernández N, Beiras R (2001) Combined toxicity of dissolved mercury with copper, lead and cadmium on embryogenesis and early larval growth of the Paracentrotus lividus sea-urchin. Ecotoxicology 5:263–271CrossRefGoogle Scholar
  31. Fernandez-Alba AR, Hernando MD, Piedra L, Chisti Y (2002) Toxicity evaluation of single and mixed antifouling biocides measured with acute toxicity bioassays. Anal Chim Acta 456:303–312CrossRefGoogle Scholar
  32. Ferrer I, Barcelo D (1999) Simultaneous determination of antifouling herbicides in marina water samples by on-line solid phase extraction followed by liquid chromatography-mass spectrometry. J Chromatogr A 854:197–206CrossRefGoogle Scholar
  33. García S, Prado M, Dégano R, Domínguez A (2002) A copper-responsive transcription factor, CRF1, mediates copper and cadmium resistance in yarrowia lipolytica. J Biol Chem 277:37359–37368CrossRefGoogle Scholar
  34. Greco WR, Unkelbach HD, Poch G, Suhnel J, Kundi M, Boedeker W (1992) Consensus on concepts and terminology for combined-action assessment: The Saariselka agreement. Arch Complex Environ Stud 4:65–69Google Scholar
  35. Hall LW, Giddings JM, Solomon KR, Balcomb R (1999) An ecological risk assessment for the use of Irgarol 1051 as an algaecide for antifouling paints. Crit Rev Toxicol 29:367–437Google Scholar
  36. Halliwell B, Gutteridge MC (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219:1–14Google Scholar
  37. Hermes JLM, Leeuwangh P (1982) Joint toxicity of mixtures of 8 and 24 chemicals to the guppy (Poecilia reticulata). Ecotoxicol Environ Saf 6:302–310CrossRefGoogle Scholar
  38. Hermens JLM (1984) Quantitative structure-activity relationship and mixture toxicity studies of chloro-and alkylanilines at an acute lethal toxicity to the guppy (Poecilia reticulata). Ecotoxicol Environ Saf 8:388–394CrossRefGoogle Scholar
  39. Hermens JLM, Canton H, Janssen P, Jong R (1984) Quantitative structure-activity relationship and toxicity studies of mixtures with anaesthetic potency: Acute lethal and sublethal toxicity to Daphnia magna. Aquat Toxicol 5:143–154CrossRefGoogle Scholar
  40. Hernando MD, Ejerhoon M, Fernandez-Alba AR, Chisti Y (2003) Combined toxicity effects of MTBE and pesticides measured with Vibrio fischeri and Daphnia magna bioassays. Wat Res 37:4091–4098CrossRefGoogle Scholar
  41. His E, Heyvang I, Geffard O, De Mountadouin X (1999) A comparison between oyster (Crassostrea gigas) and sea urchin (Paracentrotus lividus) larval bioassay for toxicological studies. Wat Res 7:1706–1718CrossRefGoogle Scholar
  42. Jones RJ, Muller J, Haynes D, Schreiber U (2003a) Effects of herbicides Diuron and atrazine on corals of the Great Barrier Reef. MEPS 251:153–167Google Scholar
  43. Jones RJ, Kerswell AP (2003b) Phytotoxicity of photosystem II (PSII) herbicides to coral MEPS. 261:149–159Google Scholar
  44. Jop KM (1989) Acute and rapid chronic toxicity of hexavalent chromium of five marine species. In: Cowgill UM, Williams LR (ed). Aquatic toxicology and hazard assessment. Vol. 12. ASTM STP 1027, Philadelphia, p 251–260Google Scholar
  45. Junghans M, Backhaus T, Faust M, Scholtze M, Grimme LH (2003) Predictability of combined effects of eight chloroacetanilide herbicides on algal reproduction. Pest Man Sci 59:1101–1110CrossRefGoogle Scholar
  46. Kobayashi N (1977) Preliminary experiments with sea urchin pluteus and metamorphosis in marine pollution bioassay. Publ Seto Mar Biol Lab 24:9–21Google Scholar
  47. Kobayashi N (1980) Comparative sensitivity of various developmental stages of sea urchins to some chemicals. Mar Biol 58:163–171CrossRefGoogle Scholar
  48. Kobayashi N (1981) Comparative toxicity of various chemicals, oil extracts and oil dispersant extracts to Canadian and Japanese sea urchin eggs. Publ Seto Mar Biol Lab 26:123–133Google Scholar
  49. Kobayashi N (1994) Application of eggs of the sea urchin Diadema setosum in marine pollution bioassay. Phuket Mar Biol Cent Res Bull 59:91–94Google Scholar
  50. Kobayashi N, Okamura H (2002) Effects of new antifouling compounds on the development of sea urchin. Mar Pollut Bull 44:748–751CrossRefGoogle Scholar
  51. Könemann H (1980) Structure–activity relationships and additivity in fish toxicities of environmental pollutants. Ecotoxicol Environ Saf 4:415–421CrossRefGoogle Scholar
  52. Könemann H (1981) Quantitative structure–activity relationships in fish toxicity studies. Part 1: Relationships for 50 industrial pollutants. Toxicology 19:209–225CrossRefGoogle Scholar
  53. Kostantinou IK, Albanis TA (2004) Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment: A review. Environ Intern 30:235–248CrossRefGoogle Scholar
  54. Kozelka PB, Bruland KW (1998) Chemical speciation of dissolved Cu, Zn, Cd, and Pb in Narragansett Bay, Rhode Island. Mar Chem 60:267–282CrossRefGoogle Scholar
  55. Lambropolou A, Sakkas VA, Albanis TA (2002) Analysis of antifouling biocides Irgarol 1051 and Sea-Nine 211 in environmental water samples using solid phase microextraction and gas chromatography. J Chromatogr A 952:215–227CrossRefGoogle Scholar
  56. Lamoree M, van der Horst A, Swart CP, van Hattum B (2002) Determination of Diuron and the antifouling paint biocide Irgarol 1051 in Dutch marinas and coastal waters. J Chromatogr A 970:183–190CrossRefGoogle Scholar
  57. Loewe S (1927) The mixing medicine. Attempt of general pharmacology of the medicine combination. Klin Wochenschr 6:1077–1085CrossRefGoogle Scholar
  58. Loewe S, Muischnek H (1926) Effect of combinations: Mathematical basis of problem. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol 114:313–326CrossRefGoogle Scholar
  59. Lorenzo JI, Nieto O, Beiras R (2002) Effect of humic acids on speciation and toxicity of copper to Paracentrotus lividus larvae in seawater. Aquat Toxicol 58:27–41CrossRefGoogle Scholar
  60. Maccinis-Ng CMO, Ralph PJ (2003) Short term response and recovery of Zostera capricorni photosynthesis after herbicide exposure. Aquat Bot 76:1–15CrossRefGoogle Scholar
  61. Manzo S (2004) Sea urchin embryotoxicity test: Proposal for a simplified bioassay. Ecotox Environ Safety 57:123–128CrossRefGoogle Scholar
  62. Manzo S, Buono S, Cremisini C (2006) Toxic effects of Irgarol and Diuron on sea urchin Paracentrotus lividus early development, fertilization, and offspring quality. Arch Environ Contam Toxicol 51:61–68CrossRefGoogle Scholar
  63. Marin MG, Moschino V, Cima F, Celli C, (2000) Embryotoxicity of butyltin compounds to the sea urchin Paracentrotus lividus. Mar Environ Res 50:231–235CrossRefGoogle Scholar
  64. Martinez K, Ferrer I, Barceló D (2000) Part-per-trillion level determination of antifouling pesticides and their byproducts in seawater samples by off-line solid-phase extraction followed by high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. J Chromatogr A 879:27–37CrossRefGoogle Scholar
  65. Martinez K, Ferrer I, Fernandez-Alba AR, Marce RM, Borrull F, Barceló D (2001) Occurrence of antifouling biocides in the Spanish Mediterranean marine environment. Environ Toxicol 22:543–552Google Scholar
  66. Metcalfe C, Rajput C, Thomas JA (2006) Studies on the interaction of extended terpyridyl and triazine metal complexes with DNA. J Inorg Biochem 100:1314–1319CrossRefGoogle Scholar
  67. Mezuca M, Hernando MD, Piedra L, Aguera A, Fernandez-Alba AR (2002) Chromatography-mass spectrometry and toxicity evaluation of selected contaminants in seawater. Chromatographia 56:199–206CrossRefGoogle Scholar
  68. Mwatibo JM, Green JD (1997) Effects of methoxychlor pre-exposure on sea urchin gametes. Bull Environ Contam Toxicol 58:589–595CrossRefGoogle Scholar
  69. Nacci D, Jackim E, Walsh R (1986) Comparative evaluation of three rapid marine toxicity tests: Sea urchin early growth test, sea urchin sperm cell toxicity test and Microtox. Environ Toxicol Chem 5:521–525CrossRefGoogle Scholar
  70. Pagano G, Esposito A, Giordano GG (1982) Fertilization and larval development in sea urchin following exposure of gametes and embryos to cadmium. Arch Environ Contam Toxicol 11:47–55CrossRefGoogle Scholar
  71. Pagano G, Esposito A, Bove P, De Angelis M, Rota A, Giordano GG (1983) The effects of hexavalent and trivalent chromium on fertilization and development in sea urchin. Environ Res 30:442–452CrossRefGoogle Scholar
  72. Pagano G, Cipollaro M, Corsale G, Esposito A, Ragucci E, Giordano GG, Trieff NM (1986) The sea urchin: Bioassay for the assessment of damage from environmental contaminants. In: Cairns J (ed), Community toxicity testing. ASTM STP920. American Society for Testing and Materials, Philadelphia, pp 66–92Google Scholar
  73. Pagano G, Iaccarino M, Guida M, Manzo S, Oral R, Romanelli R, Rossi M (1996a) Cadmium toxicity in spiked sediment to sea urchin embryos and sperm. Mar Environ Res 42:54–55Google Scholar
  74. Pagano G, His E, Beiras R, De Biase A, Korkina LG, Iaccarino M, Oral R, Qiuniou F, Warnau M, Trieff NM (1996b) Cytogenetic, developmental, and biochemical effects of aluminium, iron, and their mixture in sea urchins and mussels. Arch Environ Contam Toxicol 31:466–474Google Scholar
  75. Phillips BM, Nicely PA, Hunt JW, Anderson BS, Tjeerdema RS, Palmer SE, Palmer FH, Puckett HM (2003) Toxicity of cadmium–copper–nickel–zinc mixtures to larval purple sea urchins. Bull Environ Contam Toxicol 70:592–599CrossRefGoogle Scholar
  76. Pillai MC, Blethrow H, Higashi RM (1997) Inhibition of the sea urchin sperm acrosome reaction by a lignin-derived macromolecule. Aquat Toxicol 37:139–156CrossRefGoogle Scholar
  77. Plackett RL, Hewlett PS (1952) Quantal response to mixtures of poisons. J R Stat Soc B 14:141–163Google Scholar
  78. Radenac G, Fichet D, Miramand P (2001) Bioaccumulation and toxicity of four dissolved metals in Paracentrotus lividus sea-urchin embryo. Mar Environ Res 51:151–166CrossRefGoogle Scholar
  79. Ranke J, Jastorff B (2000) Multidimensional risk analysis of antifouling biocides. Environ Sci Pollut Res 7:105–114CrossRefGoogle Scholar
  80. Readman JW, Liong LLW, Grondin D, Bartocci J, Villeneuve JP, Mee LD (1993) Coastal water contamination from a triazine herbicide used in antifouling paints. Environ Sci Tech 27:1940–1942CrossRefGoogle Scholar
  81. Rensing C, Fan B, Sharma R, Mitra B, Rosen BP (2000) CopA: An Escherichia coli Cu(I)-translocating P-type ATPase. Proc Natl Acad Sci USA 97:652–656CrossRefGoogle Scholar
  82. Rensing C, Grass G (2003) Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol Rev 27:197–213CrossRefGoogle Scholar
  83. Ringwood AH (1992) Comparative sensitivity of gametes and early development stages of a sea urchin (Echinometra mathaei) and a bivalve species (Isognomon californicum) during metal exposures. Arch Environ Contam Toxicol 22:288–295CrossRefGoogle Scholar
  84. Rumbold DG, Snedaker SC (1997) Evaluation of bioassays to monitor surface microlayer toxicity in tropical marine waters. Arch Environ Contam Toxicol 32:135–140CrossRefGoogle Scholar
  85. Sakkas VA, Konstantinou IK, Albanis TA (2002) Aquatic phototransformation study of the antifouling agent Sea-Nine 211: Identification of byproducts and the reaction pathway by gas chromatography-mass spectroscopy. J Chromatogr A 959:215–227CrossRefGoogle Scholar
  86. Scholze M, Boedeker W, Faust M, Backhaus T, Altenburger R, Grimme H (2001) A general best-fit method for concentration-response curves and the estimation of low effect concentrations. Environ Toxicol Chem 20:448–457CrossRefGoogle Scholar
  87. Singh G, Singh PA, Sen AK (2006) Synthesis and characterization of some bivalent metal complexes of schiff bases derived from as-triazine. Synth React Inorg Metal-Organ Chem 32:171–187CrossRefGoogle Scholar
  88. Solioz M, Stoyanov JV (2003) Copper homeostasis in Enterococcus hirae. FEMS Microbiol Rev 27:183–195CrossRefGoogle Scholar
  89. Sunda W, Guillard RRL (1976) The relationship between cupric ion activity and the toxicity of copper to phytoplankton. J Mar Res 34:511–529Google Scholar
  90. Thomas KV, Blake SJ, Waldock MJ (2000) Antifouling paint booster biocide contamination in UK marine sediments. Mar Pollut Bull 40:739–745CrossRefGoogle Scholar
  91. Thomas KV (2001) The environmental fate and behaviour of antifouling pain booster biocides: A review. Bioantifouling 17:73–86Google Scholar
  92. Thomas KV, Fileman TW, Readman JW, Waldock M (2001) Antifouling paint booster biocides in the UK coastal environment and potential risks of biological effects. Mar Pollut Bull 42:677–688CrossRefGoogle Scholar
  93. Thomas KV, McHugh M, Waldock MJ (2002) Antifouling paint booster biocides in the UK costal waters: Inputs, occurrence and environmental fate. Sci Tot Environ 293:117–127CrossRefGoogle Scholar
  94. Thomas KV, McHugh M, Hilton M, Waldock M (2003) Increased persistence of antifouling paint biocides when associated with paint particles. Environ Pollut 123:153–161CrossRefGoogle Scholar
  95. Tolosa I, Readman JW, Blaevoet A, Ghilini S, Bartocci J, Horvat M (1996) Contamination of Mediterranean (Cote d’ Azure) coastal waters by organotins and Irgarol 1051 used in antifouling paints. Mar Pollut Bull 32:335–341CrossRefGoogle Scholar
  96. Tsivkovskii R, Efremov RG, Lutsenko S (2003) The role of the invariant His-1069 in folding and function of the Wilson’s disease protein, the human copper-transporting ATPase ATP7B. J Biol Chem 278:13302–13308CrossRefGoogle Scholar
  97. U.S. EPA (1980) Ambient water quality criteria for copper. EPA/440/4-80-036. National Technical Information Service, Springfield, VirginiaGoogle Scholar
  98. US EPA (1993) A linear interpolation method for sublethal toxicity: The inhibition concentration (ICp) approach. National Effluent Toxicity Assessment Center Technical Report 03-93, Environmental Research Laboratory, Duluth, MinnesotaGoogle Scholar
  99. US EPA (1995) Short-term methods for estimating the chronic toxicity of effluents and receiving waters to West coast marine and estuarine organisms. EPA/600R95136. Cincinnati, OhioGoogle Scholar
  100. U.S. EPA (2003) Draft update of ambient water quality criteria for copper (PA-822-R-03-026)Google Scholar
  101. Van Wezel AP, Van Vlaardingen P (2004) Environmental risk limits for antifouling substances. Aquat Toxicol 66:427–444CrossRefGoogle Scholar
  102. Warnau M, Pagano G (1994) Developmental toxicity of PbCl2 in the echinoid Paracentrotus lividus (Echinodermata). Bull Environ Contam Toxicol 53:434–441CrossRefGoogle Scholar
  103. Warnau M, Iaccarino M, De Biase A, Temara A, Jangoux M, Dubois P, Pagano G (1996) Spermiotoxicity and embryotoxicity of heavy metals in the Echinoid Paracentrotus lividus. Environ Toxicol Chem 15:1931–1936CrossRefGoogle Scholar
  104. Yonehara Y (2000) Recent topics on marine anti-fouling coatings [in Japanese]. Bull Soc Sea Water Sci Jpn 54:7–12Google Scholar
  105. Young LG, Nelson L (1974) The effect of heavy metal ions on the motility of sea urchin spermatozoa. Biol Bull 147:236–246CrossRefGoogle Scholar
  106. Young JS, Gurtisen JM, Apts CW, Crecelius EA (1979) The relationship between the copper complexing capacity of sea water and copper toxicity in shrimp zoeae. Mar Environ Res 2:265CrossRefGoogle Scholar
  107. Zuniga M, Roa R, Larrain A (1995) Sperm cell bioassay with the sea urchin Arbacia spatuligera on samples from two polluted Chilean coastal sites. Mar Poll Bull 30:313–319CrossRefGoogle Scholar
  108. Zhou X, Okamura H, Nagata S (2006) Remarkable synergistic effects in antifouling chemicals against Vibrio fischeri in a bioluminescent assay. J Health Sci 52:43–251CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.ENEA C. R. PorticiPorticiItaly
  2. 2.CRIAcq. Via UniversitàPorticiItaly
  3. 3.ENEA C. R. CasacciaS.Maria di GaleriaItaly

Personalised recommendations