Recent Sedimentary History of Organic Matter and Nutrient Accumulation in the Ohuira Lagoon, Northwestern Mexico

  • Ana Carolina Ruiz-Fernández
  • Mauro Frignani
  • Tommaso Tesi
  • Humberto Bojórquez-Leyva
  • Luca Giorgio Bellucci
  • Federico Páez-Osuna


210Pb-derived sediment accumulation rates, as well as a suite of geochemical proxies (Al, Fe, δ13C, δ15N), were used to assess the time-dependent variations of C, N, and P fluxes recorded in two sediment cores collected at Ohuira Lagoon, in the Gulf of California, Mexico, during the last 100 years. Sedimentary C, N, and P concentrations increased with time and were related to land clearing, water impoundment, and agriculture practices, such as fertilization. C:N:P ratios and δ13C suggested an estuarine system that is responsive to increased C loading from a N-limited phytoplankton community, whereas δ15N values showed the transition between an estuarine-terrestrial to an estuarine-more marine environment, as a consequence of the declining freshwater supply into the estuary due to the channeling and impoundment of El Fuerte River between 1900 and 1956. The recent increases in nutrient fluxes (2- to 9-fold the pre-anthropogenic fluxes of C and N, and 2 to 13 times for P) taking place in the mainland from the 1940s, were related to the expansion of the intensive agriculture fields and to the more recent development of shrimp farming activities.



Financial support was partially provided by projects CONACyT-SEMARNAT-2002-C01-0161, DGAPA IN103605-3, and Mobility Actions CONACyT-CNR Italy 2006–2008; the travel grants to A.C.R.F. were provided by ISMAR-CNR and the Program UNAM-CIC of International Academic Exchange. Thanks are due to G. Ramírez-Reséndiz, M.C. Ramírez-Jáuregui, and V. Montes-Montes (ICMyL, UNAM) for their technical assistance and to S. Regan for English revision. A.C.R.F. is also grateful to S. Romano, S. Albertazzi, and S. Giuliani for their constant support during her stay at ISMAR-CNR, Bologna, Italy. This is contribution No. 1527 from CNR-ISMAR, Bologna.


  1. Appleby PG, Oldfield F (1992) Application of lead-210 to sedimentation studies. In: Ivanovich M, Harman RS (Eds.) Uranium-series disequilibrium: Application to earth, marine and environmental sciences. Oxford, UK: Clarendon Press, pp 731–738Google Scholar
  2. Babu KN, Ouseph PP, Padmalal D (1998) Interstitial water-sediment geochemistry of N, P and Fe and its response to overlying waters of tropical estuaries: a case from the southwest coast of India. Environ Geol 39(6):633–640CrossRefGoogle Scholar
  3. Baskaran M, Naidu AS (1995) 210Pb-derived chronology and the fluxes of 210Pb and 137Cs isotopes into continental shelf sediments, East Chukchi Sea, Alaskan Arctic. Geochim Cosmochim Acta 59:4435–4448CrossRefGoogle Scholar
  4. Bratton JF, Colman SM, Seal RR (2003) Eutrophication and carbon sources in Chesapeake Bay over the last 2700 yr: human impacts in context. Geochim Cosmochim Acta 67(18):3385–3402CrossRefGoogle Scholar
  5. Cloern JE, Canuel EA, Harris D (2002) Stable carbon and nitrogen isotope composition of aquatic and terrestrial plants of the San Francisco Bay Estuarine System. Limnol Oceanogr 47(3):713–729CrossRefGoogle Scholar
  6. CONABIO (2002) Regiones Hidrológicas Prioritarias.
  7. Cornwell JC, Stevenson JC, Conley DJ, Owens M (1996) A sediment chronology of Chesapeake Bay eutrophication. Estuaries 19:488–499CrossRefGoogle Scholar
  8. Emeis KC, Struck U, Leipe T, Pollehne F, Kunzendorf H, Christiansen C (2000) Changes in the C, N, P burial rates in some Baltic Sea sediments over the last 150 years: relevance to P regeneration rates and the phosphorus cycle. Mar Geol 167(1–2):43–59CrossRefGoogle Scholar
  9. EPA (2006) Sampling and analysis of fraction organic carbon (foc) in Soils. Ohio Environmental Protection Agency,
  10. Flynn WW (1968) The determination of low levels of polonium-210 in environmental materials. Anal Chim Acta 43:221–227CrossRefGoogle Scholar
  11. Gerritse RG, Wallbrink PJ, Murray AS (1998) Accumulation of phosphorus and heavy metals in the Swan–Canning estuary, Western Australia. Estuar, Coast Shelf Sci 47:165–179CrossRefGoogle Scholar
  12. Gill M (2003) The conquest of E1 Fuerte Valley-Ed. Siglo XXI, Mexico City, 304 ppGoogle Scholar
  13. Giordani P, Angiolini L (1983) Chemical parameters characterizing the sedimentary environment in a NWAdriatic coastal area Italy. Estuar Coast Shelf Sci 17:159–167CrossRefGoogle Scholar
  14. Gonneea ME, Paytan A Herrera-Silveira JA (2004) Tracing organic matter sources and carbon burial in mangrove sediments over the past 160 years. Estuar Coast Shelf Sci 61:211–227CrossRefGoogle Scholar
  15. Goñi MA, Teixeira MJ, Perkey DW (2003) Sources and distribution of organic matter in a river-dominated estuary (Winyah Bay, SC, USA). Estuar Coast Shelf Sci 53:1023–1048CrossRefGoogle Scholar
  16. INEGI (1994) Anuarios Estadísticos de Sinaloa. Digital Library at Yale University.
  17. INEGI (2000) XII Censo General de Población y Vivienda, 2000. (Accessed April 15, 2006)
  18. Ingall ED, Van Cappellen P (1990) Relation between sedimentation rate and burial of organic phosphorus and organic carbon in marine sediments. Geochim Cosmochim Acta 54:1219–1234Google Scholar
  19. Jorgensen BB (1977) The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark). Limnol Oceanogr 22(5):814–832CrossRefGoogle Scholar
  20. Loring DH, Rantala RTT (1992) Manual for the geochemical analyses of marine sediments and suspended particulate matter. Earth Sci Rev 32(4):235–283CrossRefGoogle Scholar
  21. Lyle-Fritch PL, Romero Beltrán E, Bect Valdez JA (2001) Desarrollo y Características de las Granjas Camaronícolas en Sinaloa. In: Páez-Osuna F (Ed.) Camaronicultura y Medio Ambiente. Instituto de Ciencias del Mar y Limnología de la UNAM, México, pp 350–369Google Scholar
  22. Mathews L, Chandramohanakumar N (2003) The ratios of carbon, nitrogen and phosphorus in a wetland coastal ecosystem of Southern India. Int Rev Hydrobiol 88(2):179–186CrossRefGoogle Scholar
  23. Mesnage V, Bonneville S, Laignel B, Dupont J-P, Lefebvre D, Mikes D (2002) Filling of a wetland (Seine estuary, France): natural eutrophication or anthropogenic process? A sedimentological and geochemical study of wetland organic sediments. Hydrobiologia 475/476:423–435CrossRefGoogle Scholar
  24. Meyers PA (1994) Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem Geol 114:289–302CrossRefGoogle Scholar
  25. Meyers PA (1997) Organic geochemical proxies of palaeoceanographic, paleolimnological, palaeoclimatic processes. Organ Geochem 27:213–250CrossRefGoogle Scholar
  26. Meyers PA (2006) Organic geochemical proxies. In:Fairbridge R, Rampino M (eds) Encyclopedia of paleoclimatology and Ancient Environments. Kluwer, Dordrecht (in press)Google Scholar
  27. Meyers PA, Lallier-Vergès E (1999) Lacustrine sedimentary organic matter records of Late Quaternary paleoclimates. J Paleolimnol 21:345–372CrossRefGoogle Scholar
  28. Middelburg JJ (1989) A simple rate model for organic matter decomposition in marine sediments. Geochim Cosmochim Acta 53(7):1577–1581CrossRefGoogle Scholar
  29. Morse JL, Megonigal JP, Walbridge MR (2004) Sediment nutrient accumulation and nutrient availability in two tidal freshwater marshes along the Mattaponi River, Virgnia, USA. Biogeochemistry 69:175–206CrossRefGoogle Scholar
  30. Mook WG, Tan FC (1991) Stable carbon isotopes in rivers and estuaries. In: Biogeochemistry of Major World Rivers. In: Degens ET, Kempe S, Richey JE (eds) SCOPE 42. Scientific Committee on Problems of the Environment. (Accessed March 15, 2006)
  31. Nasnolkar CM, Shirodkar PV, Singbal SYS (1996) Studies on organic carbon, nitrogen and phosphorus in the sediments of Mandovi estuary, Goa. Ind J Marine Sci 25(2):120–124Google Scholar
  32. Orem WH, Holmes CW, Kendall C, Lerch HE, Bates AL, Silva SR, Boylan A, Corum M, Marot M, Hedgman C (1999) Geochemistry of Florida bay sediments: nutrient history at five sites in Eastern and Central Florida bay. J Coast Res 15(4):1055–1071Google Scholar
  33. Páez-Osuna F, Mandelli EF (1985) 210Pb in a tropical coastal lagoon sediment core. Estuar Coast Shelf Sci 20(33):367–374CrossRefGoogle Scholar
  34. Páez-Osuna F, Bojórquez H, Osuna-López JI (1991) Accumulation and distribution of phosphorus in sediments of the Gulf of California. Mar Mining 10:285–301Google Scholar
  35. Páez-Osuna F, Bojórquez-Leyva H, Osuna-López JI, Izaguirre-Fierro G, González-Farías F (1992) Carbon and phosphorous in the sediments of a lagoon system associated to an agricultures drainage basin. An Inst de Ciencias del Mar y Limnol. Univ Nal Autón Méx 19(1):1–11Google Scholar
  36. Ratnayake NP, Sampei Y, Tokuoka T, Suzuki N, Ishida H (2005) Anthropogenic impacts recorded in the sediments of Lunawa, a small tropical estuary, Sri Lanka. Environ Geol 48:139-148CrossRefGoogle Scholar
  37. Ruiz-Fernández AC, Hillaire-Marcel C, Ghaleb B, Páez-Osuna F, Soto-Jiménez M (2001) Isotopic constraints (210Pb, 228Th) on the sedimentary dynamics of contaminated sediments from a subtropical coastal lagoon (NW Mexico). Environ Geol 41(1–2)74–89Google Scholar
  38. Ruiz-Fernández AC, Hillaire-Marcel C, Ghaleb B, Soto-Jiménez M, Páez-Osuna F (2002) Recent sedimentary history of anthropogenic impacts on the Culiacan River Estuary, northwestern Mexico: geochemical evidence from organic matter and nutrients. Environ Pollut 118(3):365–377CrossRefGoogle Scholar
  39. Ruttenberg, KC, Goñi MA (1997) Depth trends in phosphorus distribution and C:N:P ratios of organic matter in Amazon Fan sediments: indices of organic matter source and burial history. In: Flood RD, Piper DJW, Klaus A, Peterson LC (eds) Proceedings of the Ocean Drilling Program, Scientific Results 155. Ocean Drilling Program, College Station, TX, pp 505–517Google Scholar
  40. SAGARPA (2005) Sowing advances in the main irrigation districts of Sinaloa, Mexico. (Accessed May 15, 2006)
  41. Shukla SS, Syers JK, Williams, Jd, Armstrong DE, Harris RF (1971) Sorption of inorganic phosphate by lake sediments. Soil Sci Soc Am Proc 35:244–249CrossRefGoogle Scholar
  42. Soto-Jiménez MF, Páez-Osuna F, Ruiz-Fernández AC (2003) Organic matter and nutrients in an altered subtropical marsh system, Chiricahueto, NW Mexico. Environ Geol 43:913–921Google Scholar
  43. Tappin AD (2002) An examination of the fluxes of nitrogen and phosphorus in temperate and tropical estuaries: Current estimates and uncertainties. Estuar Coast Shelf Sci 55:885–901CrossRefGoogle Scholar
  44. Tenzer GE, Meyers PA, Robbins JA, Eadie BJ, Morehead NR, Lansing MB (1999) Sedimentary organic matter record of environmental changes in the St Marys River ecosystem, Michigan-Ontario border. Organ Geochem 30:133–146CrossRefGoogle Scholar
  45. Van der Merwe NJ, Vogel JC (1978) 13C content of human collagen as a measure of prehistoric diet in woodland North America. Nature 276:815–816CrossRefGoogle Scholar
  46. Yamamuro M, Kanai Y (2005) A 200-year record of natural and anthropogenic changes in water quality from coastal lagoon sediments of Lake Shinji, Japan. Chem Geol 218:51–61CrossRefGoogle Scholar
  47. Zimmerman AR, Canuel EA (2000) A geochemical record of eutrophication and anoxia in Chesapeake Bay sediments: anthropogenic influence on organic matter composition. Marine Chem 69:117–137CrossRefGoogle Scholar
  48. Zimmerman AR, Canuel EA (2002) Sediment geochemical records of eutrophication in the mesohaline Chesapeake Bay. Limnol Oceanogr 47(4):1084–1093CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Ana Carolina Ruiz-Fernández
    • 1
  • Mauro Frignani
    • 2
  • Tommaso Tesi
    • 2
  • Humberto Bojórquez-Leyva
    • 1
  • Luca Giorgio Bellucci
    • 2
  • Federico Páez-Osuna
    • 1
    • 3
  1. 1.Universidad Nacional Autónoma de MéxicoInstituto de Ciencias del Mar y LimnologíaMazatlanMéxico
  2. 2.Istituto di Scienze Marine, CNRBolognaItaly
  3. 3.El Colegio de SinaloaPte. CuliacánMéxico

Personalised recommendations