Advertisement

Population Structure and Dynamics of Gammarus fossarum (Amphipoda) Upstream and Downstream from Effluents of Sewage Treatment Plants

  • V. LadewigEmail author
  • D. Jungmann
  • H.-R. Köhler
  • M. Schirling
  • R. Triebskorn
  • R. Nagel
Article

Abstract

Two streams in Germany (Körsch and Lockwitzbach), each with two sampling sites above and below a sewage treatment plant (STP) discharging effluent, were investigated. Sampling sites were characterized, and exposure monitoring for chemicals with known or assumed endocrine disrupting potential was carried out. Both the population structure and the population dynamics of Gammarus fossarum were examined. The physicochemical parameters measured at the sampling sites of the Lockwitzbach and Körsch streams were found not to reach levels having an acute toxic impact on the development of gammarids. The calculated estrogenic potential in the stream water was 22- to 35-fold higher at the downstream site of the Körsch compared with the other sampling sites, mainly because of the concentrations of 17α-ethinylestradiol on two sampling dates. At both streams, an influence of the respective STP effluent on the sex ratio of G. fossarum was not observed. Moreover, intersexuality was not induced by these effluents. Differences in the structure and dynamics of G. fossarum populations were more pronounced at the Körsch than at the Lockwitzbach. At the downstream sampling site at the Körsch, gammarids reached their highest abundances. Particularly at the downstream sampling site of the Körsch, the proportion of breeding female gammarids and the proportion of juvenile gammarids in the smallest body length class were decreased compared with upstream. Adult gammarids were larger from the Lockwitzbach downstream site, but they were smaller from the Körsch downstream site compared with the respective upstream site. At the Körsch, the earlier onset of the autumnal reproductive resting period could be caused by the influence of the STP effluent.

Keywords

Body Length Sewage Treatment Plant Downstream Site Upstream Site Sample Splitter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We are grateful to Nicole Metag for providing raw data of gammarid populations and physicochemical water analysis from April to June 2000 at the Lockwitzbach stream. Thanks are also due to Thomas Brethfeld. Kathrin Jaeschke, Heike Kampe, Anna Köhler, Kerstin Kriegel, Thomas G. Preuss, Natalie Rüb, and Astrid Woitschella for technical assistance. Further thanks go to Bernd Sures for the species identification of acanthocephalans. This project was funded by the Federal Environmental Agency (Umweltbundesamt) Berlin, Germany (FKZ 299 65 221/05).

References

  1. Adam S, Pawert M, Lehmann R, Roth B, Müller E, Triebskorn R (2001) Physiochemical and morphological characterization of two small polluted streams in south west Germany. J Aquat Ecosyst Stress Recov 8:179–194Google Scholar
  2. Ankley G, Mihaich E, Stahl R, Tillitt D, Colbom T, McMaster S, et al. (1998) Overview of a workshop on screening methods for detecting potential (anti-) estrogenic/androgenic chemicals in wildlife. Environ Toxicol Chem 17:68–87Google Scholar
  3. Baldwin WS, Milam DL, LeBlanc GA (1995) Physiological and biochemical perturbations in Daphnia magna following exposure to the model environmental estrogen diethylstilbestrol. Environ Toxicol Chem 14:945–952Google Scholar
  4. Bettin C, Oehlmann J, Stroben E (1996) TBT-induced imposex in marine neogastropods is mediated by an increasing androgen level. Helgol Meereswiss Unters 50:299–317Google Scholar
  5. Bick H (1959) Gammarus pulex fossarum KOCH 1835 als Fallaubzersetzer. Z Fischerei 8:635–638Google Scholar
  6. Birkhead TR, Clarkson K (1980) Mate selection and precopulatory guarding in Gammarus pulex. Z Tierpsychol 52:365–380Google Scholar
  7. Bollache L, Gambade G, Cézilly F (2001) The effects of two acanthocephalan parasites, Pomphorhynchus laevis and Polymorphus minutus, on pairing success in male Gammarus pulex (Crustacea: Amphipoda). Behav Ecol Sociobiol 49:296–303Google Scholar
  8. Bright DA, Ellis DV (1990) A comparative survey of imposex in the Northeast Pacific gastropods (Prosobranchia) related to tributyltin contamination and choice of a suitable indicator. Can J Zool 68:1915–1924Google Scholar
  9. Brown AF, Pascoe D (1989) Parasitism and host sensitivity to cadmium: An acanthocephalan infection of the freshwater amphipod Gammarus pulex. J Appl Ecol 26:473–487Google Scholar
  10. Buikema AL, Chester AL, Steeves HR (1980) Intersexuality in Gammarus minus Say. Crustaceana 6(suppl):111–117Google Scholar
  11. Cézilly F, Gregoire A, Bertin A (2000) Conflict between co-occurring manipulative parasites? An experimental study of the joint influence of two acanthocephalan parasites on the behaviour of Ganwwrus pulex. Parasitology 120:625–630Google Scholar
  12. Colborn T, vom Saal FS, Soto AM (1993) Developmental effects of endocrine disrupting chemicals on wildlife and humans. Environ Health Perspect 101:378–384Google Scholar
  13. Colborn T, Thayer K (2000) Aquatic ecosystems: Harbingers of endocrine disruption. Ecol Appl 10:949–957Google Scholar
  14. Crain DA, Guillette LJ, Pickford DB, Percival HF, Woodward AR (1998) Sex-steroid and thyroid hormone concentrations in juvenile alligators (Alligator mississippiensis) from contaminated and reference lakes in Florida, U.S.A. Environ Toxicol Chem 17:446–452CrossRefGoogle Scholar
  15. Crompton DWT, Harrison JG (1965) Observations on Polymorphus minutus (Goeze, 1782) (Acanthocephala) from a wildfowl reserve in Kent. Parasitology 55:345–355Google Scholar
  16. Dick JTA, Elwood RW (1989) Assessments and decisions during mate choice in Gammarus pulex (Amphipoda). Behaviour 109:235–246Google Scholar
  17. Dinan L, Bourne P, Whiting P, Dhadialla TS, Hutchinson TH (2001) Screening of environmental contaminants for ecdysteroid agonist and antagonist activity using the Drosophila melanogaster BII cell in vitro assay. Environ Toxicol Chem 20:2038–2046CrossRefGoogle Scholar
  18. Dunn AM, Adams J, Smith JE (1994) Intersexuality in the crustacean Gammarus duebeni. Invertebr Reprod Dev 25:139–142Google Scholar
  19. Elmgren R (1973) Methods of sampling sublittoral soft bottom meiofauna. Oikos 15(suppl):112–120Google Scholar
  20. Franke U (1977) Experimentelle Untersuchungen zur Respiration von Gammarus fossarum KOCH 1835 (Crustacea-Amphipoda) in Abhängigkeit von Temperatur, Sauerstofflconzentration und Wasserbewegung. Arch Hydrobiol 48(suppl):369–411Google Scholar
  21. Franken RJM, Waluto B, Peeters ETHM, Gardeniers JJP, Bejer JAJ, Scheffer M (2005) Growth of shredders on leaf litter biofilms: The effect of light intensity. Freshw Biol 50:459–466CrossRefGoogle Scholar
  22. Geyer HJ, Rimkus GG, Scheunert I, Kaune A, Schratnm K-W, Kettrup A, et al. (1999) Bioaccumulation and occurrence of endocrine-disrupting chemicals (EDCs), persistent organic pollutants (POPs), and other organic compounds in fish and other organisms including humans. In: Beek B (ed) The handbook of environmental chemistry. Volume 2, Part J: Bioaccumulation. Springer, Berlin, Germany, pp 38–59Google Scholar
  23. Goedmakers A (1972) Gammarus fossarum KOCH, 1835: Redescription based on neotype material and notes on its local variation (Crustacea, Amphipoda). Bijdr Dierkunde 42:124–138Google Scholar
  24. Gross MY, Maycock DS, Thomdyke MC, Morritt D, Crane M (2001) Abnormalities in sexual development of the amphipod Gammarus pulex (L.) found below sewage treatment works. Environ Toxicol Chem 20:1792–1797CrossRefGoogle Scholar
  25. Guillette LJ, Guillette EA (1996) Environmental contaminants and reproductive abnormalities in wildlife: Implications for public health? Toxicol Indust Health 12:537–550Google Scholar
  26. Haeckel J-W, Meijering MPD, Rusetzki H (1973) Gammarus fossarum KOCH als Fallaubzersetzer in Waldbächen. Freshw Biol 3:241–249Google Scholar
  27. Heinisch E, Kettrup A, Wenzel-Klein S (1993) Retrospektive Daten—Prospektive Aussagen, DDT/Lindan-Masseneinsatze in der DDR, Ökochemish-ökotoxikologische Folgen. UWSF 5:277–280 Google Scholar
  28. Heinze K (1932) Fortpflanzung und Brutpflege bei Gammarus pulex L. und Carinogammarus roeselii Gerv. Zool Jb Allg Zool 51:397–440Google Scholar
  29. Hutchinson TH, Pounds NA, Hampel M, Williams TD (1999) Impact of natural and synthetic steroids on the survival, development and reproduction of marine copepods (Tisbe battagliai). Sci Total Environ 233:167–179CrossRefGoogle Scholar
  30. Hutchinson TH (2002) Reproductive and developmental effects of endocrine dismpters in invertebrates: In vitro and in vivo approaches, Toxicol Lett 131:75–81CrossRefGoogle Scholar
  31. Hynes HBN (1955) The reproductive cycle of some British freshwater Gammaridae. J Anim Ecol 24:352–387Google Scholar
  32. Jensen P (1982) A new meiofauna sample splitter. Ann Zool Fenn 19:233–236Google Scholar
  33. Jobling S, Sumpter JP (1993) Detergent components in sewage effluent are weakly oestrogenic to fish: An in vitro study using rainbow trout (Oncorhynchus mykiss) hepatocytes. Aquat Toxicol 27:361–372CrossRefGoogle Scholar
  34. Jungmann D, Ladewig V, Ludwichowski K-U, Petzsch P, Nagel R (2004) Intersexuality in Gammarus fossarum KOCH—A common inducible phenomenon? Arch Hydrobiol 159:511–529CrossRefGoogle Scholar
  35. Körner W, Hanf V, Schuller W, Zwirner M, Hagenmaier H (1997) Entwicklung und praktische Erprobung eines einfachen Screening-Systems für estrogenartig wirkende Umweltchemikalien. Final project report Umwelt und Gesundheit PUG, Baden-Württemberg, Germany (PUG U95004)Google Scholar
  36. Körner W, Spengler P, Bolz U, Schuller W, Hanf V, Metzger JW (2001) Substances with estrogenic activity in effluents of sewage treatment plants in southwestern Germany. Environ Toxicol Chem 20:2142–2151CrossRefGoogle Scholar
  37. Körner W (2000) Nachweis von estrogen und androgenartig wirksamen Substanzen in der Umwelt durch Kombination von chemischer und biologischer Analytik. Habilitation thesis, Eberhard-Karls-University Tübingen, GermanyGoogle Scholar
  38. Kopf W (1997) Wirkungen endokriner Stoffe in Biotests mit Wasserorganismen. Münchner Beitr Abwasser, Fischerei Flußbiol 50:82–101Google Scholar
  39. Ladewig V, Jungmann D, Koehler A, Schiring M, Triebskom R, Nagel R (2002) Intersexuality in Gammarus fossarum Koch, 1835 (Amphipoda). Crustaceana 75:1289–1299CrossRefGoogle Scholar
  40. Ladewig V (2004) Der Einfluss von hormonell wirksamen Umweltchemikalien auf die Populationsökologie von Gammarus fossarum. PhD thesis, Dresden University of Technology, Dresden, GermanyGoogle Scholar
  41. Lehmann U (1967) Drift und Populationsdynamik von Gammarus pulex fossarum KOCH. Z Morph Ökol Tiere 60:227–274CrossRefGoogle Scholar
  42. Le Roux M-L (1933) Recherches sur la sexualité des gammariens. Bull Biol 16(suppl):1–139Google Scholar
  43. Ludwichowski K-U, Nagel R (2004) GC/MS Analysen des Wassers der Bäche. In: Jungmann D, Köhler, A, Köhler H-R, Ladewig V, Licht O, Ludwichowski K-U, et al. (eds) Umweltchemikalien mit Wirkung auf das Hormonsystem–TV 5: Wirkung von Xenohormionen in aquatischen Ökosystemen. Part I: Freilanduntersuchungen. German Federal Environmental Agency (UBA) Report, Berlin, Germany, pp 65–79Google Scholar
  44. Matthiessen P (2000): Is endocrine disruption a significant ecological issue? Ecotoxicology 9:21–24CrossRefGoogle Scholar
  45. Meijering MPD, Pieper HG (1982) Die Indikatorbedeutung der Gattung Gammarus in Fließgewässern. Decheniana-Beihefte 26:111–113Google Scholar
  46. Metag N (2000) Erfassung der Populationsdynamik von Gammarus fossarum im Lockwitzbach. Diploma thesis, Dresden University of Technology, Dresden, GermanyGoogle Scholar
  47. Moore CG, Stevenson JM (1991) The occurrence of intersexuality in harpacticoid copepods and its relationship with pollution. Mar Poll Bull 22:72–74Google Scholar
  48. Moore CG, Stevenson JM (1994) Intersexuality in benthic harpacticoid copepods in the Firth of Forth, Scotland. J Nat Hist 28:1213–1230Google Scholar
  49. Obrdlìk P (1972) A population of Rivulogammarus fossarum KOCH (Amphipoda) in a small fishless stream. Hydrobiologia 40:279–295Google Scholar
  50. Oehlmann J, Fioroni p, Stroben E, Markert B (1996) Tributhyltin (TBT) effects on Ocinebrina aciculata (Gastropoda: Muricidae): Imposex development, sterilization, sex change and population decline. Sci Total Environ 188:205–223Google Scholar
  51. Oehlmann J, Bauer B, Minchin D, Schulte-Oehlmann U, Fioroni P, Markert B (1998) Imposex in Nucella lapillus and intersex in Littorina littorea: Interspecific comparison of two TBT-induced effects and their geographical uniformity. Hydrobiologia 378:199–213CrossRefGoogle Scholar
  52. Oehlmann J, Schulte-Oehlnmnn U (2003) Endocrine disruption in invertebrates. Pure Appl Chem 75:2207–2218Google Scholar
  53. Parks LG, LeBlanc GA (1996) Reductions in steroid hormone biotransfomiation/elimination as abiomarker of pentachlorophenol chronic toxicity. Aquat Toxicol 34:291–303CrossRefGoogle Scholar
  54. Pfankuche O, Thiel H (1988) Sample processing, In: Higgins RP, Thiel H (eds) Introduction to the study of meiofauna. Smithsonian, Washington DC, pp 134–145Google Scholar
  55. Pöckl M (1990) Dauer der Brutentwicklung, Schlüpferfolg, Wachstum und Fekundität von vier Populationen von G. fossarum Koch, 1835 und von zwei Populationen von G. roeseli Gervais, 1835 (Crustacea: Amphipoda) aus österreichischen Fließgewässern. PhD thesis, University of Vienna, Vienna AustriaGoogle Scholar
  56. Pöckl M, Humpesch H (1990) Infra- and inter-specific variations in egg survival and brood development time for Australian populations of Gammarus fossarum and G. roeseli (Crustacea: Amphipoda). Freshw Biol 23:441–455Google Scholar
  57. Pöckl M (1993) Beiträge zur Ökologie des Bachflohkrebses (Gammarus fossarum) und Flußflohkrebses (Gammarus roeseli). Natur Mus 123:114–125Google Scholar
  58. Pöckl M (2002) Krebstiere: Flohkrebse (Crustacea: Amphipoda: Corophiidae und Gammaridae). In: Essl F, Rabitsch W (eds) Neobiota in Österreich. Umweltbundesamt Wien, pp 273–284Google Scholar
  59. Schellenberg A (1942) Krebstiere oder Crustacea. IV: Flohkrebse oder Amphipoda 40. In: Dahl F (ed) Die Tierwelt Deutschlands und der angrenzenden Meeresteile. Gustav Fischer, Jena, pp 24–32Google Scholar
  60. Schirling M, Jungmann D, Ladewig V, Nagel R, Triebskor R, Köhler H-R (2005): Endocrine effects in Gammarus fossarum (Amphipoda)?: Importance of wastewater effluents, temporal variability, and spatial aspects on natural populations. Arch Environ Contam Toxicol 49(1):53–61CrossRefGoogle Scholar
  61. Schmidt J (2003) Wirkung von Umweltchemikalien auf Gammarus fossarum—Populationsexperimente und individuenbasiertes Reproduktionsmodell. PhD thesis, Dresden University of Technology, Dresden, GermanyGoogle Scholar
  62. Shore LS, Gurevitz M, Shemesh M (1993) Estrogen as an environmental pollutant. Bull Environ Contain Toxicol 51:361–366CrossRefGoogle Scholar
  63. Sillett KB, Stemberger RS (1998) Masculinized females in a population of Leptodiaptomus minutus (Copepoda, Calanoida). Can J Zool 76:596–600CrossRefGoogle Scholar
  64. Stumpf M, Temes TA, Haberer K, Baumann W (1996) Nachweis von natürlichen und synthetischen Östrogenen in Kläranlagen und Fließgewässem. Vom Wasser 87:251–261Google Scholar
  65. Sutcliffe DW (1992) Reproduction in Gammarus (Crustacea, Amphipoda): Basic processes. Freshw Forum 2:102–128Google Scholar
  66. Sutcliffe DW (1993) Reproduction in Gammarus (Crustacea, Amphipoda): Female strategies. Freshw Forum 3:26–65Google Scholar
  67. Teichmann W (1982) Lebensabläufe und Zeitpläne von Gammariden unter ökologischen Bedingungen, Arch Hydrobiol 64(suppl):240–306Google Scholar
  68. Vandenbergh GF, Adriaens D, Verslycke T, Janssen CR (2003) Effects of 17α-ethinylostradiol on sexual development of the amphipod Hyalella azteca. Ecotoxicol Environ Saf 54:216–222CrossRefGoogle Scholar
  69. Vos JG, Dybind E, Greim HA, Ladefoged O, Lambre C, Tarazona JV, Brandt I, et al. (2000) Health effects of endocrine-disrupting chemicals on wildlife, with special reference to the European situation. Critical Rev Toxicol 30:71–133Google Scholar
  70. Ward PI (1986) A comparative field study of the breeding behaviour of a stream and a pond population of Gammarus pulex (amphipoda). Oikos 46:29–36Google Scholar
  71. Watts MM, Pascoe D, Carroll K (2002) Population responses of the freshwater amphipod Gammarus pulex (L.) to an environmental estrogen, 17α-ethinylostradiol. Environ Toxicol Chem 21:445–450CrossRefGoogle Scholar
  72. Wautier J, Roux A (1959) Note sur les Gammares du groupe pulex: dans la region Lyonnaise. Bull Soc Linn Lyon 28:76–83Google Scholar
  73. Welton JS, Clarke RT (1980) Laboratory studies on the reproduction and growth of the amphipod, Gammarus pulex (L.). J Anim Ecol 49:581–592Google Scholar
  74. Zöfel P (2001) Statistik verstehen, Bin Begleitbuch zur computergestützten Anwendung. Addison-Wesley, München, GermanyGoogle Scholar
  75. Zohar S, Holmes JC (1998) Pairing success of male Gammarus lacustris infected by two acanthocephalans: A comparative study. Behav Ecol 9:206–211Google Scholar
  76. Zou E, Fingerman M (1997a) Effects of estrogenic xenobiotics on molting of the water flea, Daphnia magna. Ecotoxicol Environ Saf 38:281–285CrossRefGoogle Scholar
  77. Zou E, Fingerman M (1997b) Synthetic estrogenic agents do not interfere with sex differentiation but do inhibit molting of the cladoceran Daphnia magna. Bull Environ Contain Toxicol 58:596–602Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • V. Ladewig
    • 1
    Email author
  • D. Jungmann
    • 1
  • H.-R. Köhler
    • 2
  • M. Schirling
    • 2
  • R. Triebskorn
    • 2
    • 3
  • R. Nagel
    • 1
  1. 1.Institute of HydrobiologyDresden University of TechnologyDresdenGermany
  2. 2.Animal Physiological EcologyUniversity of TübingenTübingenGermany
  3. 3.Steinbeis-Transfer Center for Ecotoxicology and EcophysiologyRottenburgGermany

Personalised recommendations