Advertisement

Brominated Indoles and Phenols in Marine Sediment and Water Extracts from the North and Baltic Seas–Concentrations and Effects

  • N. Reineke
  • S. Biselli
  • S. Franke
  • W. Francke
  • N. Heinzel
  • H. Hühnerfuss
  • H. Iznaguen
  • U. Kammann
  • N. Theobald
  • M. Vobach
  • W. Wosniok
Article

Abstract

This work presents results from analytical as well as ecotoxicologic investigations of sediment and water samples from the North and Baltic Seas. A bioassay-directed procedure was used to investigate cause–effect relationships between observed effects in acute laboratory bioassays (luminescent bacteria assay with Vibrio fischeri and embryo test with Danio rerio) and analyte concentrations in extracted samples. Brominated phenols and indoles—including 4-bromophenol; 2,4-dibromophenol; 4- and 6-bromoindole; 3,4-, 4,6-, and 3,6-dibromoindole; and tribrominated compounds—were identified in partly remarkable concentrations (up to 40,000 ng g−1 total organic carbon TOC for 4-bromophenol) in North Sea sediment samples and water samples (913 ng L−1 3,6-dibromoindole) from the German Bight. The toxicity of some of the identified brominated substances was low, with median effect concentration levels (EC50) ranging from 0.08 to 21.7 mg/L for V. fischeri and 4.3 to 46.3 mg/L for D. rerio. Comparison of the concentrations of analytes with ECs showed a toxicity contribution of brominated phenols and indoles to overall toxicity of the fraction. In the case of one water sample from the German Bight, brominated phenols and indoles accounted for the observed toxicity. Brominated phenols and indoles, which are assumed to be of biogenic origin, have rarely been discussed so far in the context of ecotoxicologic effects in marine ecosystems.

Keywords

Total Organic Carbon German Bight Sediment Extract Luminescent Bacterium Bacterial Luminescence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors thank G. Schüürmann for interesting and helpful discussions about the potential modes of actions of the compounds investigated herein. In addition, we thank M. Scheurell for help with the luminescent bacteria tests and M. Trenk for caring for the breeding stocks of D. rerio. Advice from F. Hoffmann and H. Schmitt regarding the manuscript is highly appreciated. This study was supported by a grant from the German Federal Ministry of Education and Research (BMBF, Grant No. 03F0271).

References

  1. Altenburger R, Backhaus T, Bödecker W, Faust M, Scholze M, Grimme LH (2000) Predictability of the toxicity of multiple chemical mixtures to Vibrio fischeri: Mixtures composed of similarly acting chemicals. Environ Toxicol Chem 19:2341–2347CrossRefGoogle Scholar
  2. Bergmann Å (2000) Brominated flame retardants—A burning issue? Organohalogen Compounds 47:36–40Google Scholar
  3. Biselli S (2001) Entwicklung einer analytischen Methode zum Nachweis von ökotoxikologisch relevanten organischen Problemstoffen in Sedimenten und Biota. Doctoral thesis, University of Hamburg, Hamburg, Germany. Available at: www. http://www.sub.uni-hamburg.de/opus/volltexte/2001/499/ Google Scholar
  4. Biselli S, Reineke N, Heinzel N, Kammann U, Franke S, Hühnerfuss H, et al. (2005) Bioassay-directed fractionation of organic extracts of marine surface sediments from the North and Baltic Sea—Part I. Determination and identification of organic pollutants. J Soils Sediments 5:171–181CrossRefGoogle Scholar
  5. Bishop YMM, Fienberg SE, Holland PW (1975) Discrete multivariate analysis: Theory and practice. Massachusetts Institute of Technology Press, Cambridge, MAGoogle Scholar
  6. De Boer J, De Boer K, Boon JP (2000) Polybrominated biphenyls and diphenylether. In: Paasivirta J (ed) New types of persistent halogenated compounds. The handbook of environmental chemistry, Springer Verlag, Heidelberg, Germany, pp 61–95Google Scholar
  7. Brack W, Altenburger R, Ensenbach U, Moeder M, Segner H, Schüürmann G (1999) Bioassay-directed identification of organic toxicants in river sediment in the industrial region of Bitterfeld (Germany)—A contribution to hazard assessment. Arch Environ Contain Toxicol 37:164–174CrossRefGoogle Scholar
  8. DIN 38 415–T6 (2001) Bestimmung der nicht akut giftigen Wirkung von Abwasser auf die Entwicklung von Fischeiern über Verdünnungsstufen (T6). Deutsche Einheitsverfahren zur Wasser- Abwasser- und SchlammuntersuchungGoogle Scholar
  9. Dumont F, Slegers G (1995) Synthesis of 7-bromo-5-iodo-4-oxo-1,4-dihydroquinoline-2-carboxylic acid. Bull Soc Belg 104:505–507Google Scholar
  10. Escher BL, Hermens JLM (2002) Modes of action in ecotoxicology: Their role in body burdens, species sensitivity, QSAR’s, and mixture effects. Environ Sci Technol 36:4201–4217CrossRefGoogle Scholar
  11. Fielman KT, Wooding SA, Lincoln DE (2001) Polychaete indicator species as a source of natural halogenated organic compounds in marine sediments. Environ Toxicol Chem 20:738–747CrossRefGoogle Scholar
  12. Gaul H, Ziebarth U (1983) Method for the analysis of lipophilic compounds in water and results about the distribution of different organochlorine compounds in the North Sea. Deutsche Hydrographische Zeitschrift 36:191–212CrossRefGoogle Scholar
  13. Gribble GW, (2000) The natural production of organobromine compounds. Environ Sci Pollut Res 7:37–49Google Scholar
  14. Gribble GW (2003a) The diversity of naturally produced organohalogens. In: paasivirta J (ed) Handbook of Environmental Chemistry 3 (Part P), Springer - Verlag, Heidelberg, Germany, pp 1–5Google Scholar
  15. Gribble GW (2003b) Naturally occurring halogenated pyrroles and indoles. Progress in Heterocyclic Chemistry 15:58–74CrossRefGoogle Scholar
  16. Heemken OP, Sturm EEC, Theobald N, Wenclawiak BW (1996) Flüsse als Eintragsquellen für organische Spurenverunreinigungen für die Nordsee. Deutsche Hydrographische Scitschrift 48:63–79Google Scholar
  17. Heinzel N (2006) Analytik organischer Substanzen in Sediment, Grund- und Oberflächenwasser—Screening, Identifizierung, und Quantitative Analyse. Doctoral thesis, University of HambergGoogle Scholar
  18. Hollert H, Keiter S, König N, Rudolf M, Ulrich M, Braunbeck T (2003) A new sediment contact assay to assess particle-bound pollutants using zebrafish (Danio rerio) embryos. J Soils Sediments 3:197–20CrossRefGoogle Scholar
  19. International Organization for Standardization (ISO/DIS) 11348-2 (1998) Determination of the inhibitory effect of water samples on the light emission of Vibrio fisheri (luminescent bacteria test). International Organization for Standardization, Geneva, SwitzerlandGoogle Scholar
  20. Kaiser KLE, McCinnon MB (1994) Computox toxicity database, version 4.01. National Water Research Institute Canada, BurlingtonGoogle Scholar
  21. Kammann U, Biselli S, Reineke N, Wosniok W, Danischewski D, Hühnerfuss H, et al. (2005) Bioassay-directed fractionation of organic extracts of marine surface sediments from the North and Baltic Sea—Part II. Results of the biotest battery and development of a biotest index. J Soils Sediments 5:225–232CrossRefGoogle Scholar
  22. Kammann U, Biselli S, Hühnerfuss H, Reineke N, Theobald N, Vobach M, et al. (2004) Genotoxic and teratogenic potential of marine sediment extracts investigated with comet assay and zebrafish test. Environ Pollut 132:279–287CrossRefGoogle Scholar
  23. King GM (1986) Inhibition of microbial activity in marine sediments by a bromophenol from a hemichordate. Nature 323:257–259CrossRefGoogle Scholar
  24. Lindberg P, Sellström U, Häggberg L, de Wit CA (2004) Higher brominated diphenyl ether and hexabromocyclododecane found in eggs of peregrine falcons (Falco peregrinus) breeding in Sweden. Environ Sci Technol 38:93–96CrossRefGoogle Scholar
  25. Liu Y, Gribble GW (2002) Syntheses of polybrominated indoles from the red algae Laurencia brongniartii and the brittle star Ophiocoma erinaceus. J Nat Prod 65:748–749CrossRefGoogle Scholar
  26. Ludwig P (1991) Untersuchungen zum enantioselektiven Abbau von polaren und unpolaren chlorierten Kohlenwasserstoffen durch marine Mikroorganismen. Doctoral thesis, University of Hamburg, Hamburg, GermanyGoogle Scholar
  27. Martin P (1998) Synthese von natürlichen Haloindolen via Hetero-Cope-Umlagerung von Vinyl-N-phenylhydroxamaten. Helv Chim Acta 71:344–347CrossRefGoogle Scholar
  28. Maruya KA, (2003) Di- and tribromoindoles in the common oyster (Crassostrea virginica). Chemosphere 52:409–413CrossRefGoogle Scholar
  29. Meinelt T, Playle RC, Pietrock M, Burnison BK, Wienke A, Steinberg CEW (2001) Interaction of cadmium toxicity in embryos and larvae of zebrafish (Danio rerio) with calcium and humic substances. Aquat Toxicol 54:205–215CrossRefGoogle Scholar
  30. Moore MR, Vetter W, Gaus C, Shaw GR, Muller JF (2002) Trace organic compounds in the marine environment. Mar Pollut Bull 45:62–68CrossRefGoogle Scholar
  31. Moubax I, Bontemps-Subielos N, Banaigs B, Combaut G, Huitorel P, Girard D, et al. (2001) Structure-activity relationship for bromoindole carbaldehydes: Effects on the sea urchin cell embryo cycle. Environ Toxicol Chem 20:589–596CrossRefGoogle Scholar
  32. Murdock A, (1991) CRC handbook of techniques for aquatic sediment sampling. CRCs, Boca Raton, FLGoogle Scholar
  33. Nagel R (2002) DarT: The embryo test with the zebrafish Danio rerio–a general model in ecotoxicology and toxicology. ALTEX 19:38–48Google Scholar
  34. Oberemm A, Becker J, Codd GA, Steinberg C (1999) Effects of cyanobacterial toxins and aqueous crude extracts of cyanobacteria on the development of fish and amphibians. Environ Toxicol 14:77–88CrossRefGoogle Scholar
  35. Ochi M, Kataoka K, Ariki A, Iwatsuki C, Kodama M, Fukuyama Y (1998) Antioxidative bromoindole derivatives from the mid-intestinal gland of the muricid gastropod Drupella fragum. J Nat Prod 61:1043–1045CrossRefGoogle Scholar
  36. Oeberg K, Warman K, Oeberg T (2002) Distributions and levels of brominated flame retardants in sewage sludge. Chemosphere 48:805–809CrossRefGoogle Scholar
  37. Ovenden SPB, Capon RJ (1999) Echinosulfonic acids A-C and echinosulfone A: Novel bromoindole sulfonic acids and a sulfone from a southern Australian marine sponge, Echinodictyum. J Nat Prod 62:1246–1249CrossRefGoogle Scholar
  38. Piers K, Meimaroglou C, Jardine RV, Brown RK (1963) The preparation of 3-bromoindole. Can J Chem 41:2399–2401CrossRefGoogle Scholar
  39. Putschew A, Mania M, Jekel M (2003) Occurrence and source of brominated organic compounds in surface waters. Chemosphere 52:399–407CrossRefGoogle Scholar
  40. Rahman F, Langford KH, Scrimshaw MD, Lester JN (2001) Polybrominated diphenyl ether (PBDE) flame retardants. Sci Total Environ 275:1–17CrossRefGoogle Scholar
  41. Reineke N (2003) Biotestgeleitete Analytik von ökotoxikologisch relevanten organischen Substanzen in Sedimentextrakten von Nord- und Ostsee. Doctoral thesis, University of Hamburg, Hamburg, Germany. Available at: www. http://www.sub.uni-hamburg.de/opus/volltexte/2001/1155/ Google Scholar
  42. Reineke N, Bester K, Hühnerfuss H, Jastorff B, Weigel S (2002) Bioassay-directed chemical analysis of river Elbe surface water including large volume extraction and high performance fractionation. Chemosphere 47:717–723CrossRefGoogle Scholar
  43. Roex EWM, de Vries E, van Gestel CAM (2002) Sensitivity of the zebrafish (Danio rerio) early life stage test for compounds with different modes of action. Environ Pollut 120:355–362CrossRefGoogle Scholar
  44. Stapleton HM, Alaee M, Letcher RL, Baker JE (2004) Debromination of the flame retardant decabromodiphenyl ether by juvenile carp (Cyprinus carpio) following dietary exposure. Environ Sci Technol 38:112–119CrossRefGoogle Scholar
  45. Strmac M, Oberemm A, Braunbeck T (2002) Effects of sediment eluates and extracts from differently polluted small rivers on zebrafish embryos and larvae. J Fish Biol 61:24–38CrossRefGoogle Scholar
  46. Schüürmann G, Somashekar RK, Kristen U (1996) Structure-activity relationships for chloro-and nitrophenol toxicity in the pollen tube growth test. Environ Toxicol Chem 15:1702–1708CrossRefGoogle Scholar
  47. Theobald N, Lange W, Rave A, Pohle U, Koennecke P (1990) Bin 100-L Glaskugelschöpfer zur kontaminationsfreien Entnahme von Seewasser fur die Analyse lipophiler organischer Stoffe. Deutsche Hydrographische Zeitschrift 43:311CrossRefGoogle Scholar
  48. Theobald N, Lange W, Gählert W, Renner F (1995) Mass spectrometric investigations of water extracts of the river Elbe for the determination of potential inputs of pollutants into the North Sea. Fresenius J Anal Chem 353:50–56CrossRefGoogle Scholar
  49. Theobald N (2003) In: Nies H, Gaul H, Oestereich F, Albrecht H, Schmolke S, Theobald N, Berichte des Bundesamtes für Seeschifffahrt und Hydrographie, Nr. 32, Die Auswirkungen des Elbehochwassers vom August 2002 auf die Deutsche Bucht, pp 58–75Google Scholar
  50. Thomas KV, Thain JE, Waldock MJ (1999) Identification of toxic substances in United Kingdom estuaries. Environ Toxicol Chem 18:404–411Google Scholar
  51. Van Stee LLP, Leonards PEG, van Loon WMGM, Hendriks AJ, Maas JL, Struijs J, et al. (2002) Use of semi-permeable membrane devices and solid-phase extraction for the wide-range screening of microcontaminants in surface water by GC-AED/MS. Wat Res 36:4455–4470CrossRefGoogle Scholar
  52. Vetter W (2001) A GC/ECNI-MS method for the identification of lipophilic anthropogenic and natural brominated compounds in marine samples. Anal Chem 73:4951–4957CrossRefGoogle Scholar
  53. Weigel S (2003) Occurrence, distribution and fate of pharmaceuticals and further polar contaminants in the marine environment. Doctoral thesis, University of Hamburg, Hamburg, Germany. Available at: www. http://www.sub.uni-hamburg.de/opus/volltexte/2001/2045/ Google Scholar
  54. Weigel S, Bester K, Hühnerfuss H (2005) Identification and quantification of pesticides, industrial chemicals and organobromine compounds of medium to high polarity in the North Sea. Mar Pollut Bull 50:252–263CrossRefGoogle Scholar
  55. Whitfield FB, Drew M, Helidoniotis F, Svoronos D (1999a) Distribution of bromophenols in species of marine algae from eastern Australia. J Agric Food Chem 47:2367–2373CrossRefGoogle Scholar
  56. Whitfield FB, Drew M, Helidoniotis F, Svoronos D (1999b) Distribution of bromophenols in species of marine polychaetes and bryozoans from eastern Australia and the role of such animals in the flavour of edible ocean fish and prawns (shrimp). J Agric Food Chem 47:4756–4762CrossRefGoogle Scholar
  57. Wiegand C, Krause E, Steinberg C, Pflugmacher S (2001) Toxicokinetics of atrazine in embryos of the zebrafish (Danio rerio). Ecotoxicol Environ Saf 49:199–205CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • N. Reineke
    • 1
  • S. Biselli
    • 2
  • S. Franke
    • 1
  • W. Francke
    • 1
  • N. Heinzel
    • 1
  • H. Hühnerfuss
    • 1
  • H. Iznaguen
    • 1
  • U. Kammann
    • 3
  • N. Theobald
    • 2
  • M. Vobach
    • 3
  • W. Wosniok
    • 4
  1. 1.Institute of Organic ChemistryUniversity of HamburgGermany
  2. 2.Federal Maritime and Hydrographic AgencyGermany
  3. 3.Institute for Fishery EcologyFederal Research Centre for FisheriesGermany
  4. 4.Institute of StatisticsUniversity of BremenGermany

Personalised recommendations