Microcosm Evaluation of the Toxicity and Risk to Aquatic Macrophytes from Perfluorooctane Sulfonic Acid

  • M. L. Hanson
  • P. K. Sibley
  • R. A. Brain
  • S. A. Mabury
  • K. R. Solomon


Perfluorooctane sulfonic acid (PFOS) is an anthropogenic contaminant detected in various environmental and biologic matrices. This compound is a fluorinated surfactant, a class of molecules renowned for their persistence and their global distribution but for which few ecotoxicological data are currently available, especially under field conditions. The toxicity of PFOS to the aquatic macrophytes Myriophyllum sibiricum and M. spicatum was investigated using 12,000 L outdoor microcosms. Replicate microcosms (n = 3) were treated with 0.3, 3, 10, and 30 mg/L PFOS as the potassium salt and assessed at regular intervals during a period of 42 days. M. sibiricum was more sensitive to PFOS under these simulated field conditions than M. spicatum. Toxicity was observed in the evaluated end points at >3 mg/L PFOS for EC10s and >12 mg/L PFOS for EC50s for M. spicatum and in M. sibiricum at >0.1 mg/L PFOS for EC10s and >1.6 mg/L PFOS for EC50s. The no observed–effect concentration (NOEC) for M. spicatum was consistently ≥11.4 mg/L PFOS, whereas the NOEC for M. sibiricum was ≥0.3 mg/L PFOS. A risk assessment for these plants estimated a negligible probability of toxicity being observed in these plants from PFOS exposure at current environmental concentrations.


  1. American Society for Testing and Materials. (1999)Standard guide for conducting static, axenic, 14-day phytotoxicity tests in test tubes with the submersed aquatic macrophyte, Myriophyllum sibiricum Komarov (E 1913–97) Annual book of ASTM standards. Volume 11.05. American Society for Testing and Materials Philadelphia, PA. pp 1434-1448Google Scholar
  2. Barrat-Segretain, M-H, Elger, A 2004Experiments on growth interactions between two invasive macrophyte speciesJ Veg Sci15109114Google Scholar
  3. Boudreau, TM, Wilson, CJ, Cheong, WJ, Sibley, PK, Mabury, SA, Muir, DCG,  et al. 2003aResponse of the zooplankton community and environmental fate of perfluorooctane sulfonic acid in aquatic microcosmsEnviron Toxicol Chem2227392745CrossRefGoogle Scholar
  4. Boudreau, TM, Sibley, PK, Mabury, SA, Muir, DCG, Solomon, KR 2003bLaboratory evaluation of the toxicity of perfluoroooctane sulfonate (PFOS) on Selenastrum capricornutum, Chlorella vulgaris, Lemna gibba, Daphnia magna, and Daphnia pulicariaArch Environ Contam Toxicol44307313CrossRefGoogle Scholar
  5. Brown D, Mayer CE (2000) 3M to pare Scotchgard products. The Washington Post, Washington D.C., May 17Google Scholar
  6. Ellis, DA, Mabury, SA, Martin, JW, Muir, DCG 2001Thermolysis of fluoropolymers as a potential source of halogenated organic acids in the environmentNature412321324CrossRefPubMedGoogle Scholar
  7. Ellis, DA, Martin, JW, DeSilva, AO, Mabury, SA, Hurley, MD, Sulbaek Andersen, MP,  et al. 2004Degradation of fluorotelomer alcohols: A likely atmospheric source of perfluorinated carboxylic acidsEnviron Sci Technol3833163321CrossRefPubMedGoogle Scholar
  8. Foekema EM (2004) How to improve the realism of aquatic pond mesocosms for regulatory decisions on pesticide registration? Society of Environmental Toxicology and Chemistry. 14th Annual Meeting of SETAC Europe, Prague, Czech Republic, April 18-22, 2004Google Scholar
  9. Giesy, JP, Kannan, K 2001Global distribution of perfluorooctane sulfonate in wildlifeEnviron Sci Technol3513391342PubMedGoogle Scholar
  10. Gillian, FD, Mandel, JS 1993Mortality among employees of a perfluorooctanoic acid production plantJ Occup Med35950954PubMedGoogle Scholar
  11. Hansen, KJ, Johnson, HO, Eldridge, JS, Butenhoff, JL, Dick, LA 2002Quantitative characterization of trace levels of PFOS and PFOA in the Tennessee RiverEnviron Sci Technol3616811685PubMedGoogle Scholar
  12. Hanson, ML, Sibley, PK, Solomon, KR, Mabury, SA, Muir, DCG 2001Chlorodifluoroacetic acid (CDFA) fate and toxicity to the macrophytes Lemna gibba, Myriophyllum spicatum and Myriophyllum sibiricum in aquatic microcosmsEnviron Toxicol Chem2027582767CrossRefPubMedGoogle Scholar
  13. Hanson, ML, Solomon, KR 2002A new technique for estimating thresholds of toxicity in ecological risk assessmentEnviron Sci Technol3632573264CrossRefPubMedGoogle Scholar
  14. Hanson, ML, Sibley, PK, Ellis, D, Mabury, SA, Muir, DCG, Solomon, KR 2002Evaluation of monochloroacetic (MCA) degradation and toxicity to Lemna gibba, Myriophyllum spicatum, and Myriophyllum sibiricum in aquatic microcosmsAquat Toxicol61251273CrossRefPubMedGoogle Scholar
  15. Hanson, ML, Solomon, KR 2004aHaloacetic acids in the aquatic environment. Part I: Ecological risk assessment for aquatic macrophytesEnviron Pollut130371383CrossRefGoogle Scholar
  16. Hanson, ML, Solomon, KR 2004bHaloacetic acids in the aquatic environment. Part I: Macrophyte toxicityEnviron Pollut130385401CrossRefGoogle Scholar
  17. Hanson ML, Small J, Sibley PK, Boudreau T, Brain RA, Mabury SA. 2004 Microcosm evaluation of the fate, toxicity and risk to aquatic macrophytes from perfluorooctanoic acid (PFOA). Arch Environ Contam Toxicol (submitted) Google Scholar
  18. Heuvel, JPV 1996Perfluorodecanoic acid as a useful pharmacologic tool for the study of peroxisome proliferationGen Pharmacol2711231129PubMedGoogle Scholar
  19. Hoff, PT, Dongen, W, Esmans, EL, Blust, R, Coen, WM 2003Evaluation of the toxicological effects of perfluorooctane sulfonic acid in the common carp (Cyprinus carpio)Aquat Toxicol62349359CrossRefPubMedGoogle Scholar
  20. Hu, WY, Jones, PD, DeCoen, W, King, L, Fraker, P, Newsted, J,  et al. 2003Alterations in cell membrane properties caused by fluorinated compoundsComp Biochem Physiol1357788Google Scholar
  21. Kannan, K, Koistenen, J, Beckman, K, Evans, T, Grozelany, J, Jones, PD,  et al. 2001Perfluorooctane sulfonate and related fluorinated organic compounds in marine mammalsEnviron Sci Technol3515931598CrossRefPubMedGoogle Scholar
  22. Key, BD, Howell, RD, Criddle, CS 1997Fluorinated organics in the biosphereEnviron Sci Technol3124452454CrossRefGoogle Scholar
  23. MacDonald, M, Warne, A, Mabury, SA, Solomon, KR, Sibley, PK 2004Toxicity of perfluorooctane sulfonic acid (PFOS) to Chironomus tentans under field and laboratory conditionsEnviron Toxicol Chem2321162123CrossRefPubMedGoogle Scholar
  24. Martin, JW, Mabury, SA, Solomon, KR, Muir, DCG 2003Bioconcentration and tissue distribution of perfluorinated acids in rainbow trout (Oncorhynchus mykiss)Environ Toxicol Chem22196204PubMedGoogle Scholar
  25. Martin, JW, Smithwick, MM, Braune, B, Hoekstra, PF, Muir, DCG, Mabury, SA 2004Identification of long-chain perfluorinated acids in biota from the Canadian ArcticEnviron Sci Technol38373380PubMedGoogle Scholar
  26. Moody, CA, Field, JA 1999Determination of perfluorocarboxylates in groundwater impacted by fire-fighting activityEnviron Sci Technol3328002806CrossRefGoogle Scholar
  27. Moody, CA, Martin, JW, Kwan, WC, Muir, DCG, Mabury, SC 2002Monitoring perfluorinated surfactants in biota and surface water samples following an accidental release of fire-fighting foam into Etobicoke CreekEnviron Sci Technol36545551PubMedGoogle Scholar
  28. Moody, CA, Hebert, GN, Strauss, SH, Field, JA 2003Occurrence and persistence of perfluorooctane sulfonate and other perfluorinated surfactants in groundwater at a fire-training area at Wurtsmith Air Force Base, Michigan, USAJ Environ Monit5341345PubMedGoogle Scholar
  29. Oakes K, Sibley PK, Mabury SA, Solomon KR, Van der Kraak G.(2004) Impact of perfluorooctane sulfonic acid (PFOS) on fatty acyl-CoA oxidase activity, circulating steroids, and reproduction of several fish species. Aquat Toxicol. submitted Toxicol Chem (accepted Sept. 2004)Google Scholar
  30. Parkhurst, BR, Warren-Hicks, W, Etchinson, T, Butcher, JB, Cardwell, RD, Volison, J 1995Methodology for aquatic ecological risk assessmentFinal Report prepared for the Water Environment Research FoundationAlexandria, VAGoogle Scholar
  31. Remde, A, Debus, R 1996Biodegradability of fluorinated surfactants under aerobic and anaerobic conditionsChemosphere3215631574PubMedGoogle Scholar
  32. Roshon, RD, McCann, JH, Thompson, DG, Stephenson, GR 1999Effects of seven forestry management herbicides on Myriophyllum sibiricum as compared with other nontarget aquatic organismsCan J For Res2911581169Google Scholar
  33. Sanderson, H, Boudreau, TM, Mabury, SA, Cheong, WJ, Solomon, KR 2002Ecological impact and environmental fate of perfluorooctane sulfonate in the zooplankton community in indoor microcosmsEnviron Toxicol Chem2114901496PubMedGoogle Scholar
  34. Sanderson, H, Boudreau, TM, Mabury, SA, Solomon, KR 2003Impact of perfluorooctanoic acid on the structure of the zooplankton community in indoor microcosmsAquat Toxicol62227234PubMedGoogle Scholar
  35. Sanderson, H, Boudreau, TM, Mabury, SA, Solomon, KR 2004Effects of perfluorooctane sulfonate and perfluorooctanoic acid on the zooplanktonic communityEcotoxicol Environ Safety586876PubMedGoogle Scholar
  36. Solomon, KR, Giesy, J, Jones, P 2000Probabilistic risk assessment of agrochemicals in the environmentCrop Prot19649655Google Scholar
  37. Stephenson, GL, Koper, N, Atkinson, GF, Solomon, KR, Scroggins, RP 2000Use of nonlinear regression techniques for describing concentration-response relationships of plant species exposed to contaminated site soilsEnviron Toxicol Chem1929682981Google Scholar
  38. Suter, GW,II 1995

    Introduction to ecological risk assessment for aquatic toxic effects

    Rand, GM eds. Fundamentals of aquatic toxicology, effects, environmental fate and risk assessment2Taylor and FrancisWashington, DC803816
    Google Scholar
  39. Taniyasu, S, Kannan, K, Horii, Y, Hanari, N, Yamashita, N 2003A survey of perfluorooctane sulfonate and related perfluorinated organic compounds in water, fish, birds, and humans from JapanEnviron Sci Technol3726342639PubMedGoogle Scholar
  40. Touart LW (1995) In: Rand GM, (ed) Fundamentals of aquatic toxicology, effects, environmental fate and risk assessment. 2nd ed. Taylor and Francis, Washington, DC, 657–668Google Scholar
  41. Upham, BL, Deocampo, ND, Wurl, B, Trosko, JE 1998Inhibition of gap junctional intercellular communication by perfluorinated fatty acids is dependent on the chain length of the fluorinated tailInt J Cancer78491495PubMedGoogle Scholar
  42. U.S. Environmental Protection Agency (2000) Perfluoroctyl sulfonates: Proposed significant new use rule. In Fed Reg 65(202). 40 CFR Part 721; OPPTS-50639; FRL-6745-5, October 18, 2000, 62319–62333Google Scholar
  43. Welter, AN 1979Technical report summary 3MSt. PaulMNGoogle Scholar

Copyright information

© Springer Science+Business Media Inc. 2005

Authors and Affiliations

  • M. L. Hanson
    • 1
  • P. K. Sibley
    • 1
  • R. A. Brain
    • 1
  • S. A. Mabury
    • 2
  • K. R. Solomon
    • 1
  1. 1.Centre for Toxicology, Department of Environmental BiologyUniversity of GuelphGuelphCanada
  2. 2.Department of ChemistryUniversity of TorontoTorontoCanada

Personalised recommendations