Using Transgenic Caenorhabditis elegans in Soil Toxicity Testing

  • Amber L. Graves
  • Windy A. Boyd
  • Phillip L. Williams


Soil bioassays are important tools for evaluating toxicological effects within the terrestrial environment. The American Society for Testing and Materials E2172-01 Standard Guide outlines a method for conducting laboratory soil toxicity tests using the nematode Caenorhabditis elegans. This method is an efficient tool for extracting C. elegans from soil samples and can be carried out after a 24-h exposure period using relatively small amounts of soil. Drawbacks of this method include problems with (1) recovery of nematodes from soils containing a high percentage of organic matter, and (2) distinguishing indigenous nematode species from nematodes added for the laboratory test. Due in part to these issues, C. elegans has not been extensively accepted for use in soil testing. To address these concerns and improve upon the American Society for Testing and Materials method, this project focused on using transgenic strains of C. elegans carrying a GFP-expressing element. Lethality and behavior tests revealed that the transgenic nematodes respond similarly to the wild-type N2 strain, indicating that they can be used in the same manner in soil testing. The GFP marker is easily identifiable not only within soils containing a large amount of organic matter, but also in field-collected soils containing indigenous nematodes. These results support the use of transgenic GFP C. elegans in soil bioassays as a tool to further the reliability of laboratory toxicity tests.


  1. American Society for Testing and Materials (2002) Standard guide for conducting laboratory soil toxicity tests with the nematode Caenorhabditis elegans. In: Annual book of ASTM standards. Philadelphia, PA, 11.05, pp 1606–1616 Google Scholar
  2. Black, M, Williams, PL 2001Preliminary assessment of metal toxicity in the middle Tisza River (Hungary) flood plainJ Soils Sediments1213216Google Scholar
  3. Bongers, T, Bongers, M 1998Functional diversity of nematodesAppl Soil Ecol10239251CrossRefGoogle Scholar
  4. Boyd, WA, Anderson, GL, Dusenbery, DB, Williams, PL 1999

    Computer tracking method for assessing behavioral changes in the nematode Caenorhabditis elegans

    Price, FTBrix, KVLane, NK eds. Environmental toxicology and risk assessment: recent achievements in environmental fate and transport, ninth vol. ASTM STP 1381American Society for Testing and MaterialsWest Conshohocken, Pennsylvania
    Google Scholar
  5. Boyd, WA, Williams, PL 2003Comparison of the sensitivity of three nematode species to copper and their utility in aquatic and soil toxicity testsEnviron Toxicol Chem2227682774PubMedGoogle Scholar
  6. Brenner, SJ 1974The genetics of Caenorhabditis elegansGenetics777194PubMedGoogle Scholar
  7. Chalfie, M, Yuan, T, Euskirchen, G, Ward, W, Prasher, DC 1994Green fluorescent protein as a marker for gene expressionScience263802805PubMedGoogle Scholar
  8. Cioci, LK, Qui, L, Freedman, JH 2000Transgenic strains of the nematode Caenorhabditis elegans as biomonitors of metal contaminationEnviron Toxicol Chem1921222129Google Scholar
  9. David, HE, Dawe, AS, Pomerai, DI, Jones, D, Candido, EPM, Daniells, C 2003Construction and evaluation of a transgenic hsp16-GFP-lacZ Caenorhabditis elegans strain for environmental monitoringEnviron Toxicol Chem22111118PubMedGoogle Scholar
  10. Dhawan, R, Dusenbery, DB, Williams, PL 1999Comparison of lethality, reproduction, and behavior as toxicological endpoints in the nematode Caenorhabditis elegansJ Toxicol Environ Health Part A58451462Google Scholar
  11. Donkin, S, Williams, PL 1995Influence of developmental stage, salts and food presence on various end points using Caenorhabditis elegans for aquatic toxicity testingEnviron Toxicol Chem1421392147Google Scholar
  12. Dusenbery, DB 1985Using a microcomputer and video camera to simultaneously track 25 animalsComput Biol Med15169175PubMedGoogle Scholar
  13. Dusenbery DB (1996) NIH Image, Version 1.59 computer tracking program modified by Dr. David Dusenbery, School of Biology, Georgia Institute of Technology, Atlanta, GeorgiaGoogle Scholar
  14. Fire, A, William, GK, Hsu, M, Xu, S, Ahnn, J, Harfe, BD, Kostas, SA, Hsieh, J 1998

    The uses of green fluorescent protein in Caenorhabditis elegans

    Chalfie, MKain, S eds. Green fluorescent protein Wiley-LissNew York, New York
    Google Scholar
  15. Freckman, DW 1988Bacterivorous nematodes and organic-matter decompositionAgric Ecosyst Environ24195217CrossRefGoogle Scholar
  16. Freeman, MN, Marse, TJ, Williams, PL 1998

    Establishment of quality assurance procedures for aquatic toxicity testing with the nematode Caenorhabditis elegans

    Little, EEDeLonay, AJGreenberg, BM eds. Environmental toxicology and risk assessment: 7th vol., ASTM STP 1333, American Society for Testing and MaterialsWest ConshohockenPennsylvania4559
    Google Scholar
  17. Markwiese, JT, Ryti, RT, Hooten, MM, Michael, DI, Hlohowskyj, I 2001Toxicity bioassays for ecological risk assessment in arid and semiarid ecosystemsRev Environ Contam Toxicol1684398PubMedGoogle Scholar
  18. Peredney, CL, Williams, PL 2000Utility of Caenorhabditis elegans for assessing heavy metal contamination in artificial soilArch Environm Contam Toxicol39113118Google Scholar
  19. Riddle DL (1988) The dauer larva. In: Wood WB (eds).The nematode Caenorhabditis elegans. Cold Spring Harbor Laborator 393–412Google Scholar
  20. Riddle DL, Blumenthal T, Meyer BJ, Priess JR, (eds) (1997) C. ELEGANS II Cold Spring Harbor Laboratory Press, Plainview, New YorkGoogle Scholar
  21. SAS Institute, Inc. 1989SAS/STAT user’s guide, version 6,4thSAS Institute, Inc., CaryNorth CarolinaGoogle Scholar
  22. Williams, PL, Dusenbery, DB 1990Aquatic toxicity testing using the nematode Caenorhabditis elegansEnviron Toxicol Chem912851290Google Scholar
  23. Yeates, GW 1979Soil nematodes in terrestrial ecosystemsJ Nematol11213227Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Amber L. Graves
    • 1
  • Windy A. Boyd
    • 2
  • Phillip L. Williams
    • 1
  1. 1. Department of Environmental Health ScienceUniversity of GeorgiaAthensUSA
  2. 2. Nicholas School of the Environment and Earth SciencesDuke UniversityDurhamUSA

Personalised recommendations