Differential Uptake and Transport of Trivalent and Hexavalent Chromium by Tumbleweed (Salsola kali)

  • J. L. Gardea-Torresdey
  • G. de la Rosa
  • J. R. Peralta-Videa
  • M. Montes
  • G. Cruz-Jimenez
  • I. Cano-Aguilera


Experiments were conducted to determine the differential absorption of Cr species by tumbleweed (Salsola kali) as well as the effect of this heavy metal on plant growth and nutrient uptake. Tumbleweed seeds were grown in an agar-based media containing different concentrations of either Cr(III) or Cr(VI). The results demonstrated that the uptake of Cr was influenced by the Cr concentration in the growth medium and the speciation of this heavy metal. When supplied in the hexavalent form, the concentration of Cr in the different plant parts (2900, 790, and 600 mg kg−1 for roots, stems, and leaves, respectively) was between 10 and 20 times higher than the amounts found when Cr was supplied in the trivalent form. In addition, it was found that in most of the experiments, Cr(III) exhibited more toxic effects on tumbleweed plants than Cr(VI). The size of roots of plants grown in 20 mg L−1 Cr(III) were significantly smaller (p < 0.05) than those grown in 20 mg L−1 Cr(VI). Plants exposed to 20 mg L−1 Cr(III) produced shoots significantly shorter (p < 0.05) compared with the size of control plants and with those grown in 20 mg L−1 Cr(VI). In addition, the absorption of macronutrients and microelements was in general lower when the plants were grown in the medium containing Cr(III). The amounts of Cr concentrated in the aerial plant parts under experimental conditions may indicate tumbleweed as a new option for the phytoremediation of Cr-contaminated soil.


Phytoremediation Biomass Accumulation Eichhornia Crassipes Hexavalent Chromium Trivalent Chromium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the financial support of the National Institutes of Health (Grant No. S06GM8012-33); the University of Texas at El Paso’s Center for Environmental Resource Management through funding from the Office of Exploratory Research of the EPA (Cooperative Agreement No. CR-819849-01-04); the HBCU/MI Environmental Technology Consortium, which is funded by the Department of Energy; and the Consejo Nacional de Ciencia y Tecnologia of Mexico (CONACyT) (Grant No. 131996) (GD).


  1. Aldrich, MV, Gardea-Torresdey, JL, Peralta-Videa, JR, Parsons, JG 2003Uptake and reduction of Cr(VI) to Cr(III) by mesquite (Prosopis spp.): Chromate-plant interaction in hydroponics and solid media studied using XASEnviron Sci Technol3718591864Google Scholar
  2. Appenroth, KJ, Bischoff, M, Gabrys, H, Stoeckel, J, Swartz, H, Walckzak, T,  et al. 2000Kinetics of chromium(V) formation and reduction in fronds of the duckweed Spirodela polyrhiza—a low frequency EPR studyJ Inorg Biochem78235242Google Scholar
  3. Armienta, MA, Rodriguez, R, Ceniceros, N, Juarez, F, Cruz, O 1996Distribution, origin and fate of chromium soils in Guanajuato, MexicoEnviron Pollut91391397Google Scholar
  4. Barnhart, J 1997Occurrences, uses and properties of chromiumReg Toxicol Pharmacol26S3S7Google Scholar
  5. Becquer, T, Quantin, C, Sicot, M, Boudot, JP 2003Chromium availability in ultrafamic soils from New CaledoniaSci Total Environ301251261Google Scholar
  6. Calabrese, EJ, Baldwin, LA 2003Inorganics and hormesisCrit Rev Toxicol33215304Google Scholar
  7. Cervantes, C, Campos-Garcia, J, Devars, S, Gutierrez-Corona, F, Loza-Tavera, H, Torres-Guzman, JC,  et al. 2001Interactions of chromium with microorganisms and plantsFEMS Microbiol Rev25335347Google Scholar
  8. Chaney, RL, Malik, M, Li, YM, Brown, SL, Brewer, EP, Angle, JS,  et al. 1997Phytoremediation of soilsCurr Opin Biotechnol8279284CrossRefPubMedGoogle Scholar
  9. Chatterjee, J, Chatterjee, C 2000Phytotoxicity of cobalt, chromium and copper in cauliflowerEnviron Pollut1096974Google Scholar
  10. Costa, M 2000Chromium and nickelZalups, RKKoropatnick, J eds. Molecular biology and toxicology of metalsTaylor and FrancisGreat Britain113114Google Scholar
  11. Dube, BK, Tewari, K, Chartterjee, J, Chartterjee, C 2003Excess chromium alters uptake and translocation of certain nutrients in citrullusChemosphere5311471153Google Scholar
  12. Fernandes, MLV, Calouro, F, Abreu, MM 2002Application of chromium to soils at different rates and oxidation states. I. Effect on dry matter yield and chromium uptake by radishCommun Soil Sci Plant3322592268Google Scholar
  13. Gardea-Torresdey JL, Polette L, Arteaga S, Tiemann KJ, Bibb J, Gonzalez JH (1996) Determination of the content of hazardous heavy metals on Larrea tridentata grown around a contaminated area. In: Erickson LR, Tillison DL, Grant SC, McDonald JP (eds) Proceedings of the eleventh annual EPA Conference on Hazardous Waste Research Substances, Albuquerque, NM, p 660Google Scholar
  14. Gardea-Torresdey, JL, Peralta-Videa, JR, Montes, M, la Rosa, G, Corral-Diaz, B 2004Bioaccumulation of cadmium, chromium and copper by Convulvulus arvensis L.: Impact on plant growth and uptake of nutritional elementsBioresource Technol92229235Google Scholar
  15. Hauschild, MZ 1993Putrescine (1,4-diaminobutane) as an indicator of pollution-induced stress in higher plants: Barley and rape stressed with Cr(III) or Cr(VI)Ecotoxicol Environ Safe26228247Google Scholar
  16. Higgins, TE, Halloran, AR, Petura, JC 1997Traditional and innovative treatment methods for Cr(VI) in soilsProctor, DFinley, BHarris, MPaustenbach, DRabbe, D eds. Chromium in soils: Perspective in chemistry, health, and environmental regulationLewisBoca Raton, FL767769Google Scholar
  17. Howe, JA, Loeppert, RH, Derose, VJ, Hunter, DB, Bertsch, PM 2003Localization and speciation of chromium in subterranean clover using XRF, XANES, and EPR spectroscopyEnviron Sci Technol3740914097Google Scholar
  18. Khan, AG 2001Relationships between chromium biomagnification ratio, accumulation factor, and mycorrhizae in plants growing on tannery effluent-polluted soilEnviron Int26417423Google Scholar
  19. Kimbrough, DE, Cohen, Y, Winer, AM, Creelman, L, Mabuni, C 1999A critical assessment of chromium in the environmentCrit Rev Environ Sci Technol29146Google Scholar
  20. Kingston, HMJassie, LB eds. 1988ACS professional reference book seriesAmerican Chemical SocietyWashington, DCGoogle Scholar
  21. Lytle, CM, Lytle, FW, Yang, N, Qian, JH, Hansen, D, Zayed, A,  et al. 1998Reduction of Cr(VI) to Cr(III) by wetland plants: Potential for in situ heavy metal detoxificationEnviron Sci Technol3230873093Google Scholar
  22. McGrath, SP 1995Chromium and nickelAlloway, BJ eds. Heavy metals in soils2Chapman and HallGreat Britain152153164Google Scholar
  23. Mengel, K, Kirkby, EA 2001Principles of plant nutrition5Kluwer AcademicThe Netherlands664665Google Scholar
  24. Mishra, S, Shanker, K, Srivastra, MM, Srivastra, S, Shrivastrav, R, Dass, S,  et al. 1997A study on the uptake of trivalent and hexavalent chromium by paddy (Oryza sativa): Possible chemical modifications in rhizosphereAgric Ecosyst Environ625358Google Scholar
  25. Mora, R, Gomez, I, Navarro, P, Mataix, J 1996Absorption of Cr and effects on micronutrient content in tomato plant (Lycopersicum esculentum)Agrochimica40132138Google Scholar
  26. Peralta, JR, Gardea-Torresdey, JL, Tiemann, KJ, Gomez, E, Arteaga, S, Rascon, E,  et al. 2001Uptake and effect of five heavy metals on seed germination and plant growth in alfalfa (Medicago sativa)Bull Environ Contam Toxicol66727734PubMedGoogle Scholar
  27. Peralta-Videa, JR, Gardea-Torresdey, JL, Gomez, E, Tiemann, KJ, Parsons, JG, la Rosa, G,  et al. 2002Potential of alfalfa plant to phytoremediate individually contaminated montmorillonite-soils with Cd(II),Cr(VI),Cu(II), Ni(II), and Zn(II)Bull Environ Contam Toxicol697481Google Scholar
  28. Reeves, RD, Baker, AJM 2000Metal-accumulating plantsRaskin, IEnsley, BD eds. Phytoremediation of toxic metals: Using plants to clean up the environmentWileyNew York, NY193229Google Scholar
  29. Rosas, I, Belmont, R, Baez, A, Villalobos-Pietrini, R 1989Some aspects of the environmental exposure to chromium residues in MexicoWater Air Soil Pollut48463475Google Scholar
  30. Salt, DE, Pickering, IJ, Prince, RC, Glebba, D, Dushenkov, S, Smith, RD,  et al. 1997Metal accumulation by aquacultured seedlings of Indian mustardEnviron Sci Technol3116361644Google Scholar
  31. Shallari, S, Schwartz, C, Hasko, A, Morel, JL 1998Heavy metals in soils and plants of serpentine and industrial sites of AlbaniaSci Total Environ209133142Google Scholar
  32. Sharma, DC, Sharma, CP, Tripathi, RD 2003Phytotoxic lesions of chromium in maizeChemosphere516368Google Scholar
  33. Shrivastava, R, Upreti, RK, Seth, PK, Chaturvedi, UC 2002Effects of chromium on the immune systemFEMS Immunol Med Microbiol3417Google Scholar
  34. Skeffington, RA, Shewry, PR, Peterson, PJ 1976Chromium uptake and transport in barley seedlings (Hordeum vulgare L.)Planta132209214Google Scholar
  35. Wallace, RB, Walker, HM, Ashworth, PR 1955Calcium-magnesium nutrition with special reference to serpentine soilsPlant Physiol30214225Google Scholar
  36. Zayed, A, Lytle, CM, Qian, JH, Terry, N 1998Chromium accumulation, translocation and chemical speciation in vegetable cropsPlanta206293299Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • J. L. Gardea-Torresdey
    • 1
    • 2
  • G. de la Rosa
    • 2
    • 3
  • J. R. Peralta-Videa
    • 2
  • M. Montes
    • 1
  • G. Cruz-Jimenez
    • 2
  • I. Cano-Aguilera
    • 3
  1. 1.Chemistry DepartmentUniversity of Texas at El PasoEl PasoUSA
  2. 2.Environmental Science and Engineering PhD ProgramUniversity of Texas at El PasoEl PasoUSA
  3. 3.Facultad de QuímicaUniversidad de GuanajuatoGuanajuatoMéxico

Personalised recommendations