The Development of Marine Toxicity Identification Evaluation (TIE) Procedures Using the Unicellular Alga Nitzschia closterium

  • A. C. Hogan
  • J. L. Stauber
  • F. Pablo
  • M. S. Adams
  • R. P. Lim


Unicellular algae are highly sensitive to a wide range of toxicants and have been used extensively in ecotoxicological testing. This, along with their ability to grow in very small test volumes over short test durations, make them ideal test organisms for use in Toxicity Identification Evaluations (TIEs). Despite this, microalgae have not previously been used in marine TIE studies. In this study, the marine diatom Nitzschia closterium was shown to be a highly suitable test organism after modification of the standard test protocol to reduce test volumes to 6 mL and test duration to 48 h. The alga was tolerant to the chemicals used in phase I of the standard USEPA TIE protocol, and physical TIE manipulations had no effect on algal growth. The cation exchange procedure, however, inhibited algal growth, while the anion exchange procedure stimulated growth, making these two procedures unsuitable for use with this species. Of the buffers trialed for the graduated pH procedure, 0.01 M PIPES buffer was found to be suitable for buffering at pH 7 because it maintained the required pH over the duration of the test and did not affect the growth or sensitivity of the algae to one reference toxicant (copper). A trial TIE on a secondary-treated sewage effluent for discharge into coastal waters showed that the developed protocols could successfully be used to identify ammonia as the major toxicant in the effluent.



The authors thank Melbourne Water for providing the effluent and for funding the WET and TIE studies and Minh Nguyen (AMDEL) for the GC analyses. Thanks also to Sherry Yuen, Michelle Pham, and Monique Binet for technical assistance, and Drs. Howard Bailey and Gary Vaughan for advice on the TIE methodology.


  1. Ankley, GT, Dierkes, JR, Jensen, DA, Peterson, GS 1991Piperonyl butoxide as a tool in aquatic toxicological research with organophosphate insecticidesEcotoxicol Environ Saf21266274PubMedGoogle Scholar
  2. Ankley, GT, Burkhard, LP 1992Identification of surfactants as toxicants in a primary effluentEnviron Toxicol Chem1112351248Google Scholar
  3. ANZECC and ARMCANZ (2000) Australian and New Zealand guidelines for fresh and marine water quality. National Water Quality Management Strategy Paper No.4, Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, CanberraGoogle Scholar
  4. Arensberg, P, Hemmingsen, VH, Nyholm, N 1995A miniscale algal toxicity testChemosphere1121032115CrossRefGoogle Scholar
  5. Bailey, HC, Young, L 1997A comparison of the results of freshwater toxicity testing of pulp and paper mill effluentsWater sci Technol35305313Google Scholar
  6. Bailey, HC, Krassoi, R, Elphick, JR, Mulhall, A-M, Hunt, P, Tedmanson, L, Lovell, A 2000Whole effluent toxcity of sewage treatment plants in the Hawkesbury-Nepean Watershed, NSW, Australia, to Ceriodaphnia dubia and Selenastrum capricornutumEnviron Toxicol Chem197281Google Scholar
  7. Brown, VB, Davies, SA, Synnot, RN 1990Long-term monitoring of the effects of treated sewage effluent on the intertidal macroalgal community near Cape Schanck, VictoriaAust Bot Mar338598Google Scholar
  8. Burgess, RM, Charles, JB, Kuhn, A, Hoy, KT, Patton, LE, McGovern, DG 1997Development of a cation-exchange methodology for marine toxicity identification evaluation applicationsEnviron Toxicol Chem1612031211Google Scholar
  9. Burkhard, LP, Ankley, GT 1989Identifying toxicants: NETAC’s toxicity-based approachEnviron Sci Technol2314381443Google Scholar
  10. Burkhard, LP, Jenson, JJ 1993Identification of ammonia, chlorine, and diazinon as toxicants in a municipal effluentArch Environ Contam Toxicol25506515Google Scholar
  11. Douglas, WS, Grasso, SS, Hutton, DG, Schroeder, KR 1996Ionic imbalance as a source of toxicity in an estuarine effluentArch Environ Contam Toxicol31506515Google Scholar
  12. Environment Canada (1992) Biological test method: growth inhibition test using the freshwater alga selenastrum capricornutum. Report EPS 1/RM/25, 41 ppGoogle Scholar
  13. Franklin NM, Stauber JL, Markich SJ, Lim R (1998) A new tropical algal test to assess the toxicity of metals in freshwaters. Supervising scientist report 133, supervising scientist, CanberraGoogle Scholar
  14. Franklin, NM, Stauber, JL, Markich, S, Lim, R 2000pH-dependent toxicity of copper and uranium to a tropical freshwater alga (Chiorella sp.)Aquat Toxicol48275289PubMedGoogle Scholar
  15. Gilbert, F, Galgani, F, Cadiou, Y 1992Rapid assessment of metabolic activity in marine macroalgae: application in ecotoxicological tests and evaluation of water qualityMar Biol112199205Google Scholar
  16. Guillard, RRI, Ryther, JH 1962Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervaceae (Cleve) GranCa J Microbiol8229239Google Scholar
  17. Hegetschweiler, K, Saltman, P 1986Interaction of copper (II) with N-(2-hydroxyethyl)piperazine-N′-ethanesulfonic acid (HEPES)Inorg Chem25107109Google Scholar
  18. Ho, KT, Mitchell, K, Zappala, M, Burgess, RM 1995Effects of brine addition on effluent toxicity and marine toxicity identification evaluation (TIE) manipulationsEnviron Toxicol Chem14245249Google Scholar
  19. Ho, KT, McKinney, RA, Kuhn, A, Pelletier, MC, Burgess, RM 1997Identification of acute toxicants in New Bedford Harbor sedimentsEnviron Toxicol Chem16551558Google Scholar
  20. Ho, KT, Burgess, RM, Pelletier, C, Serbst, JR, Ryba, SA, Cantwell, MG, Kuhn, A, Raczelowski, P 2002An overview of toxicant identification in sediments and dredged marterialsMar Pollutt Bull44289293Google Scholar
  21. Jop, KM, Askew, AM 1994Toxicity identification evaluation using a short-term chronic test with Ceriodaphnia dubiaBull Environ Contam Toxicol539197PubMedGoogle Scholar
  22. Joubert, G 1980A bioassay application for quantitative toxicity measurements using the green alga Seienastrum capricornutumWater Res1417591763Google Scholar
  23. Joubert, G 1983

    Detailed method for quantitative toxicity measurements using the green algae Selenastrum capricornutum

    Nriagu, JO eds. Aquatic toxicologyJohn Wiley & SonsNew York468469
    Google Scholar
  24. Lage, OM, Vasconcelos, MTSD, Soares, HMVM, Osswald, JM, Sansonetty, F, Parente, AM, Salema, R 1996Suitability of the pH buffers 3 [N-N-bis(hydroxyethyl)amino]-2-hydroxypropanesulfonic acid and ,N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid for in vitro copper toxicity studiesArch Environ Contam Toxicol31199205Google Scholar
  25. Lewis, MA 1995

    Algae and vascular plants tests

    Rand, GM eds. Fundamentals of aquatic toxicology — effects, environmental fate and risk assessmentTaylor & FrancisWashington, D.C.135171
    Google Scholar
  26. Melbourne Water/CSIRO (1999) Environmental impact assessment and review of effluent disposal options for Eastern treatment plant — summary report on findings, May, 1999, 16 ppGoogle Scholar
  27. Mirenda, RJ, Hall, WS 1992The application of effluent characterization procedures in toxicity identification evaluationsWater Sci Technol253944Google Scholar
  28. Morrison, RT, Boyd, RN 1987Organic chemistry5Allyn and Bacon Inc.Newton10591060663, 668Google Scholar
  29. Nyholm, N 1985Response variable in algal growth inhibition test — biomass or growth rateWater Res19273279CrossRefGoogle Scholar
  30. Nyholm, N, Kallqvist, T 1989Methods for growth inhibition toxicity tests with algaeArch Environ Contam Toxicol19518522CrossRefGoogle Scholar
  31. OECD1984Alga, growth inhibition test. In OECD guidelines for testing of chemicals. guideline 201. Vol 1Organisation for Economic Cooperation and DevelopmentParis, France114Google Scholar
  32. Peterson, HG, Healey, FP, Wagemann, R 1984Metal toxicity to algae: a highly pH dependent phenomenonCan J Fisheries Aquatic sci41974979Google Scholar
  33. Powell, RL, Moser, EM, Kimerle, RA, McKenzie, DE, McKee, M 1996Use of a miniaturized test system for determining acute toxicity of toxicity identification evaluation fractionsEcotoxicol Environ Saf3516PubMedGoogle Scholar
  34. Prescott, LM, Harley, JP, Klein, DA 1993Microbiology2Wm. C. Brown PublishersDubuque536541Google Scholar
  35. Pun, KC, Cheung, RYH, Wong, MH 1995Characterization of sewage sludge and toxicity evaluation with microalgaeMar Poll Bull31394401Google Scholar
  36. Schubauer-Berigan, MK, Amato, JR, Ankley, GT, Baker, SE, Burkhard, LP, Dierkes, JR, Jenson, JJ, Lukasewycz, MT, Norberg-King, TJ 1993The behaviour and identification of toxic metals in complex mixtures: examples from effluent and sediment pore water toxicity identification evaluationsArch Environ Contam Toxicol24298306Google Scholar
  37. Stauber, JL, Tsai, J, Vaughan, GT, Peterson, SM, Brockbank, CI 1994Algae as indicators of toxicity of the effluent from bleached eucalypt kraft pulp mills. National Pulp Mills Research Program technical report no. 3.CSIROCanberra146Google Scholar
  38. Stauber, JL 1995Toxicity testing using marine and freshwater unicellular algaeAustralasian J Ecotoxicol11524Google Scholar
  39. Stauber, JL, Davies, CM 2000Use and limitations of microbial bioassays for assessing copper bioavailability in the aquatic environmentEnviron Rev8255301Google Scholar
  40. US Environmental Protection Agency (1991) Methods for aquatic toxicity identification evaluations. Phase I toxicity characterization procedures, 2nd ed. EPA-600/6-91/0303Google Scholar
  41. US Environmental Protection Agency (1994) Short-term methods for estimating the chronic toxicity of effluents and receiving water to marine and estuarine organisms. EPA-600-4-91-003Google Scholar
  42. US Environmental Protection Agency (1996) Marine toxicity identification evaluation (TIE). Phase I guidance document. EPA 600/R-96/054Google Scholar
  43. vasconcelos, MTSD, Azenha, MAGO, Lage, OM 1996Electrochemical evidence of surfactant activity of the HEPES pH buffer which may have implications on trace metal availability to cultures in vitroAnal Biochem241248253PubMedGoogle Scholar
  44. Viessman, W,Jr, Hammer, MJ 1985Water supply and pollution control4Harper & RowNew York231235Google Scholar
  45. Walsh, GE, Garnas, RL 1983Determination of the bioactivity of chemical fractions of liquid wastes using freshwater and saltwater algae and crustaceansEnviron Sci Technol17180182Google Scholar
  46. Wong, PTS, Coulture, P 1986

    Toxicity testing using phytoplankton

    Dutka, BJ eds. Toxicity testing using microorganisms vol. IICRC Press, Inc.Boca Raton79100
    Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • A. C. Hogan
    • 1
  • J. L. Stauber
    • 2
  • F. Pablo
    • 3
  • M. S. Adams
    • 2
  • R. P. Lim
    • 1
  1. 1.Department of Environmental ScienceUniversity of Technology, SydneyGore HillAustralia
  2. 2.Centre for Advanced Analytical ChemistryCSIRO Energy TechnologyAustralia
  3. 3.Centre for EcotoxicologyUniversity of Technology, Sydney/NSW Environment Protection AuthorityGore HillAustralia

Personalised recommendations