Expression of vitamin D receptor, CYP27B1 and CYP24A1 hydroxylases and 1,25-dihydroxyvitamin D3 levels in stone formers

  • Thalita Lima Melo
  • Priscila Ligeiro Gonçalves Esper
  • Lysien Ivania Zambrano
  • Milene Subtil Ormanji
  • Fernanda Guedes Rodrigues
  • Ita Pfeferman HeilbergEmail author
Original Paper


The expression of vitamin D receptor (VDR) and 1,25-dihydroxyvitamin D3 [1,25(OH)D] levels exceed the values of controls in some but not all hypercalciuric stone formers (HSF). We aimed to evaluate serum 1,25(OH)D levels, the expression of VDR, CYP27B1, and CYP24A1 hydroxylases in HSF in comparison with normocalciuric stone formers (NSF) and healthy subjects (HS). Blood samples, 24-h urine collections and a 3-day dietary record were obtained from 30 participants from each of the groups. The expression of VDR, CYP27B1, and CYP24A1 was measured by flow cytometry. HSF presented significantly higher urinary volume, sodium, magnesium, oxalate, uric acid, and phosphorus than NSF and HS. Calcium intake was lower in HSF versus NSF and HS (442 ± 41 vs 594 ± 42 and 559 ± 41 mg/day, respectively, p = 0.027). Ionized calcium was significantly lower in HSF than NSF (1.29 ± 0.0 vs 1.31 ± 0.0 mmol/L, p < 0.01). Serum 1,25(OH)D was significantly higher in HSF and NSF than HS (22.5 ± 1.2; 22.2 ± 1.2 vs 17.4 ± 1.2 pg/ml, p = 0.007) but serum 25(OH)D, PTH, klotho and plasma FGF-23 did not differ between groups. VDR expression was higher in HSF and NSF than HS (80.8 ± 3.2; 78.7 ± 3.3 vs 68.6 ± 3.2%, p = 0.023). Although CYP27B1 and CYP24A1 expressions were similar among all groups, the ratio of 1,25(OH)D/CYP24A1 was higher in HSF and NSF than in HS (1.43 ± 0.25 and 0.56 ± 0.10 vs 0.34 ± 0.06, p = 0.00). Stone formers, regardless of urinary calcium excretion, had higher VDR expression and 1,25(OH)D levels than HS, even in ranges considered normal. Higher 1,25(OH)D/CYP24A1 ratio suggested a lower degradation of 1,25(OH)D by CYP24A1 in HSF and NSF.


Hypercalciuria Vitamin D receptor Nephrolithiasis CYP27B1 CYP24A1 



The authors thank Altay Alves Lino de Souza for his expert statistical assistance and advice. We also thank Maria Aparecida Dalboni, Caren Cristina Grabulosa and Silvia Regina Moreira for technical assistance. This study was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP—2016/25359-0), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES—Scholarship) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ—Grant 309045/2018-5, IPH).

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest. The authors declare that the results presented in this paper have not been published previously in whole.

Ethical approval

All procedures performed in the study involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study. Brazil Ethic Committee no 1.156.469 (Plataforma Brasil).


  1. 1.
    Coe FL, Worcester EM, Evan AP (2016) Idiopathic hypercalciuria and formation of calcium renal stones. Nat Rev Nephrol 12(9):519–533. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Moe OW (2005) Genetic hypercalciuria. J Am Soc Nephrol 16(3):729–745. CrossRefPubMedGoogle Scholar
  3. 3.
    Heilberg IP, Goldfarb DS (2013) Optimum nutrition for kidney stone disease. Adv Chronic Kidney Dis 20(2):165–174. CrossRefPubMedGoogle Scholar
  4. 4.
    Taylor EN, Hoofnagle AN, Curhan GC (2015) Calcium and phosphorus regulatory hormones and risk of incident symptomatic kidney stones. Clin J Am Soc Nephrol 10(4):667–675. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Sassi F, Tamone C, D’Amelio P (2018) Vitamin D: nutrient, hormone, and immunomodulator. Nutrients. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Frick KK, Asplin JR, Krieger NS, Culbertson CD, Asplin DM, Bushinsky DA (2013) 1,25(OH)2D3-enhanced hypercalciuria in genetic hypercalciuric stone-forming rats fed a low-calcium diet. Am J Physiol Ren Physiol 305(8):F1132–F1138. CrossRefGoogle Scholar
  7. 7.
    Favus MJ, Karnauskas AJ, Parks JH, Coe FL (2004) Peripheral blood monocyte vitamin D receptor levels are elevated in patients with idiopathic hypercalciuria. J Clin Endocrinol Metab 89(10):4937–4943. CrossRefPubMedGoogle Scholar
  8. 8.
    Zerwekh JE, Yu XP, Breslau NA, Manolagas S, Pak CY (1993) Vitamin D receptor quantitation in human blood mononuclear cells in health and disease. Mol Cell Endocrinol 96(1–2):1–6CrossRefGoogle Scholar
  9. 9.
    Zerwekh JE, Reed BY, Heller HJ, González GB, Haussler MR, Pak CY (1998) Normal vitamin D receptor concentration and responsiveness to 1, 25-dihydroxyvitamin D3 in skin fibroblasts from patients with absorptive hypercalciuria. Miner Electrolyte Metab 24(5):307–313CrossRefGoogle Scholar
  10. 10.
    Kaplan RA, Haussler MR, Deftos LJ, Bone H, Pak CY (1977) The role of 1 alpha, 25-dihydroxyvitamin D in the mediation of intestinal hyperabsorption of calcium in primary hyperparathyroidism and absorptive hypercalciuria. J Clin Investig 59(5):756–760. CrossRefPubMedGoogle Scholar
  11. 11.
    Shen FH, Baylink DJ, Nielsen RL, Sherrard DJ, Ivey JL, Haussler MR (1977) Increased serum 1,25-dihydroxyvitamin D in idiopathic hypercalciuria. J Lab Clin Med 90(6):955–962PubMedGoogle Scholar
  12. 12.
    Insogna KL, Broadus AE, Dreyer BE, Ellison AF, Gertner JM (1985) Elevated production rate of 1,25-dihydroxyvitamin D in patients with absorptive hypercalciuria. J Clin Endocrinol Metab 61(3):490–495CrossRefGoogle Scholar
  13. 13.
    Bataille P, Bouillon R, Fournier A, Renaud H, Gueris J, Idrissi A (1987) Increased plasma concentrations of total and free 1,25-(OH)2D3 in calcium stone formers with idiopathic hypercalciuria. Contrib Nephrol 58:137–142CrossRefGoogle Scholar
  14. 14.
    Kim WT, Kim Y-J, Yun SJ, Shin K-S, Choi YD, Lee SC, Kim W-J (2014) Role of 1,25-dihydroxy vitamin D3 and parathyroid hormone in urinary calcium excretion in calcium stone formers. Yonsei Med J 55(5):1326–1332. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Moyano MJ, Tejada MJGD, Lozano RG, Moruno R, Ortega R, Marti V, Sanchez Palencia R, Palma A, Perez Cano R (2007) Changes in bone mineral metabolism in patients with recurrent urolithiasis and vitamin D receptor gene polymorphisms. Preliminary results. Nefrologia 27(6):694–703PubMedGoogle Scholar
  16. 16.
    Ketha H, Singh RJ, Grebe SK, Bergstralh EJ, Rule AD, Lieske JC, Kumar R (2015) Altered calcium and Vitamin D homeostasis in first-time calcium kidney stone-formers. PLoS One 10(9):e0137350. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Giannini S, Nobile M, Castrignano R, Pati T, Tasca A, Villi G, Pellegrini F, D’Angelo A (1993) Possible link between vitamin D and hyperoxaluria in patients with renal stone disease. Clin Sci (London, England: 1979) 84(1):51–54CrossRefGoogle Scholar
  18. 18.
    Heilberg IP, Martini LA, Szejnfeld VL, Carvalho AB, Draibe SA, Ajzen H, Ramos OL, Schor N (1994) Bone disease in calcium stone forming patients. Clin Nephrol 42(3):175–182PubMedGoogle Scholar
  19. 19.
    Hess B, Ackermann M, Essig M, Takkinen R, Jaeger P (1995) Renal mass and serum calcitriol in male idiopathic calcium renal stone formers: role of protein intake. J Clin Endocrinol Metab 80(6):1916–1921. CrossRefPubMedGoogle Scholar
  20. 20.
    Berlin T, Holmberg I, Bjorkhem I (1986) High circulating levels of 25-hydroxyvitamin D3 in renal stone formers with hyperabsorptive hypercalciuria. Scand J Clin Lab Investig 46(4):367–374. CrossRefGoogle Scholar
  21. 21.
    Hess B, Casez J-P, Takkinen R, Ackermann D, Jaeger P (1993) Relative hypoparathyroidism and calcitriol up-regulation in hypercalciuric calcium renal stone formers—impact of nutrition. Am J Nephrol 13:18–26CrossRefGoogle Scholar
  22. 22.
    Vezzoli G, Caumo A, Baragetti I, Zerbi S, Bellinzoni P, Centemero A, Rubinacci A, Moro GL, Adamo D, Bianchi G, Soldati L (1999) Study of calcium metabolism in idiopathic hypercalciuria by strontium oral load test. Clin Chem 45(2):257–261PubMedGoogle Scholar
  23. 23.
    Misael da Silva AM, dos Reis LM, Pereira RC, Futata E, Branco-Martins CT, Noronha IL, Wajchemberg BL, Jorgetti V (2002) Bone involvement in idiopathic hypercalciuria. Clin Nephrol 57(3):183–191CrossRefGoogle Scholar
  24. 24.
    Stubbs JR, Idiculla A, Slusser J, Menard R, Quarles LD (2010) Cholecalciferol supplementation alters calcitriol-responsive monocyte proteins and decreases inflammatory cytokines in ESRD. J Am Soc Nephrol 21(2):353–361. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Worcester EM, Bergsland KJ, Gillen DL, Coe FL (2013) Evidence for increased renal tubule and parathyroid gland sensitivity to serum calcium in human idiopathic hypercalciuria. Am J Physiol Renal Physiol 305:F853–F860. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Vezzoli G, Macrina L, Rubinacci A, Spotti D, Arcidiacono T (2016) Intestinal calcium absorption among hypercalciuric patients with or without calcium kidney stones. Clin J Am Soc Nephrol 11(8):1450–1455. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Menon VB, Moyses RMA, Gomes SA, de Carvalho AB, Jorgetti V, Heilberg IP (2014) Expression of fibroblast growth factor 23, vitamin D receptor, and sclerostin in bone tissue from hypercalciuric stone formers. Clin J Am Soc Nephrol 9(7):1263–1270. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Hu H, Zhang J, Lu Y, Zhang Z, Qin B, Gao H, Wang Y, Zhu J, Wang Q, Zhu Y, Xun Y, Wang S (2017) Association between circulating vitamin D level and urolithiasis: a systematic review and meta-analysis. Nutrients. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Gray RW, Wilz DR, Caldas AE, Lemann J (1977) The importance of phosphate in regulating plasma 1,25-(OH)2-vitamin D levels in humans: studies in healthy subjects in calcium-stone formers and in patients with primary hyperparathyroidism. J Clin Endocrinol Metab 45(2):299–306. CrossRefPubMedGoogle Scholar
  30. 30.
    Caldas AE, Gray RW, Lemann J (1978) The simultaneous measurement of vitamin D metabolites in plasma: studies in healthy adults and in patients with calcium nephrolithiasis. J Lab Clin Med 91(5):840–849PubMedGoogle Scholar
  31. 31.
    De Leenheer AP, Bauwens RM (1985) Radioimmunoassay for 1,25-dihydroxyvitamin D in serum or plasma. Clin Chem 31(1):142–146. CrossRefPubMedGoogle Scholar
  32. 32.
    Wong SY, Slater SR, Evans RA, Mason R, Lancaster EK, Acland SM, Eade Y, Hills E, Dunstan CR (1992) Metabolic studies in kidney stone disease. Q J Med 82(299):247–258PubMedGoogle Scholar
  33. 33.
    Prié D, Ravery V, Boccon-Gibod L, Friedlander G (2001) Frequency of renal phosphate leak among patients with calcium nephrolithiasis. Kidney Int 60(1):272–276. CrossRefPubMedGoogle Scholar
  34. 34.
    Shakhssalim N, Gilani KR, Parvin M, Torbati PM, Kashi AH, Azadvari M, Golestan B, Basiri A (2011) An assessment of parathyroid hormone, calcitonin, 1,25 (OH)2 vitamin D3, estradiol and testosterone in men with active calcium stone disease and evaluation of its biochemical risk factors. Urol Res 39(1):1–7. CrossRefPubMedGoogle Scholar
  35. 35.
    Sutton RAL, Walker VR (1986) Bone resorption and hypercalciuria in calcium stoneformers. Metabolism 35(6):485–488. CrossRefPubMedGoogle Scholar
  36. 36.
    Jarrar K, Amasheh RA, Graef V, Weidner W (1996) Relationship between 1,25 OH D, calcium and uric acid in urinary stone formers. Urol Int 56:16–20CrossRefGoogle Scholar
  37. 37.
    Asplin JR, Bauer KA, Kinder J, Muller G, Coe BJ, Parks JH, Coe FL (2003) Bone mineral density and urine calcium excretion among subjects with and without nephrolithiasis. Kidney Int 63(2):662–669. CrossRefPubMedGoogle Scholar
  38. 38.
    Tang J, McFann KK, Chonchol MB (2012) Association between serum 25-hydroxyvitamin D and nephrolithiasis: the National Health and Nutrition Examination Survey III, 1988–94. Nephrol Dial Transplant 27(12):4385–4389. CrossRefPubMedGoogle Scholar
  39. 39.
    Rendina D, Esposito T, Mossetti G, De Filippo G, Gianfrancesco F, Perfetti A, Magliocca S, Formisano P, Prie D, Strazzullo P (2012) A functional allelic variant of the FGF23 gene is associated with renal phosphate leak in calcium nephrolithiasis. J Clin Endocrinol Metab 97(5):E840–E844. CrossRefPubMedGoogle Scholar
  40. 40.
    Ferraro PM, Minucci A, Primiano A, De Paolis E, Gervasoni J, Persichilli S, Naticchia A, Capoluongo E, Gambaro G (2017) A novel CYP24A1 genotype associated to a clinical picture of hypercalcemia, nephrolithiasis and low bone mass. Urolithiasis 45(3):291–294. CrossRefPubMedGoogle Scholar
  41. 41.
    Nesterova G, Malicdan MC, Yasuda K, Sakaki T, Vilboux T, Ciccone C, Horst R, Huang Y, Golas G, Introne W, Huizing M, Adams D, Boerkoel CF, Collins MT, Gahl WA (2013) 1,25-(OH)(2)D-24 Hydroxylase (CYP24A1) deficiency as a cause of nephrolithiasis. Clin J Am Soc Nephrol 8(4):649–657. CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Mulay SR, Anders HJ (2016) Crystallopathies. N Engl J Med 375(13):e29. CrossRefPubMedGoogle Scholar
  43. 43.
    Ferraro PM, Mandel EI, Curhan GC, Gambaro G, Taylor EN (2016) Dietary protein and potassium, diet-dependent net acid load, and risk of incident kidney stones. Clin J Am Soc Nephrol 11(10):1834–1844. CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Vezzoli G, Dogliotti E, Terranegra A, Arcidiacono T, Macrina L, Tavecchia M, Pivari F, Mingione A, Brasacchio C, Nouvenne A, Meschi T, Cusi D, Spotti D, Montanari E, Soldati L (2015) Dietary style and acid load in an Italian population of calcium kidney stone formers. Nutr Metab Cardiovasc Dis 25(6):588–593. CrossRefPubMedGoogle Scholar
  45. 45.
    Trinchieri A, Lizzano R, Marchesotti F, Zanetti G (2006) Effect of potential renal acid load of foods on urinary citrate excretion in calcium renal stone formers. Urol Res 34(1):1–7. CrossRefPubMedGoogle Scholar
  46. 46.
    Martini LA, Cuppari L, Cunha MA, Schor N, Heilberg IP (1998) Potassium and sodium intake and excretion in calcium stone forming patients. J Ren Nutr 8(3):127–131CrossRefGoogle Scholar
  47. 47.
    Moe OW, Preisig PA (2005) Hypothesizing on the evolutionary origins of salt-induced hypercalciuria. Curr Opin Nephrol Hypertens 14(4):368–372CrossRefGoogle Scholar
  48. 48.
    Martini LA, Cuppari L, Colugnati FA, Sigulem DM, Szejnfeld VL, Schor N, Heilberg IP (2000) High sodium chloride intake is associated with low bone density in calcium stone-forming patients. Clin Nephrol 54(2):85–93PubMedGoogle Scholar
  49. 49.
    Lieben L, Carmeliet G (2013) Vitamin D signaling in osteocytes: effects on bone and mineral homeostasis. Bone 54(2):237–243. CrossRefPubMedGoogle Scholar
  50. 50.
    Vezzoli G, Baragetti I, Zerbi S, Caumo A, Soldati L, Bellinzoni P, Centemero A, Rubinacci A, Moro GL, Bianchi G (1998) Strontium absorption and excretion in normocalciuric subjects: relation to calcium metabolism. Clin Chem 44(3):586–590PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Thalita Lima Melo
    • 1
  • Priscila Ligeiro Gonçalves Esper
    • 2
  • Lysien Ivania Zambrano
    • 3
    • 4
  • Milene Subtil Ormanji
    • 2
  • Fernanda Guedes Rodrigues
    • 1
  • Ita Pfeferman Heilberg
    • 2
    Email author
  1. 1.Nutrition Post Graduation ProgramUniversidade Federal de São PauloSão PauloBrazil
  2. 2.Nephrology DivisionUniversidade Federal de São PauloSão PauloBrazil
  3. 3.Department of Physiology, Cardiovascular Division, Escola Paulista de MedicinaUniversidade Federal de São PauloSão PauloBrazil
  4. 4.Department of Morphological SciencesUniversidad Nacional Autónoma de HondurasTegucigalpaHonduras

Personalised recommendations