Skip to main content

Advertisement

Log in

Vision for the future on urolithiasis: research, management, education and training—some personal views

  • Review
  • Published:
Urolithiasis Aims and scope Submit manuscript

Abstract

The field of urolithiasis has undergone many rapid changes in the last 3 decades. In this article, three eminent experts in various fields of urolithiasis research describe their respective visions for the future in stone research, stone treatment and surgical training. Many stone researchers have seen and regretted that there has not been a real breakthrough for decades now. Exceptions are the application of citrate prophylaxis and the abandonment of calcium-avoiding diet in stone formers. Certain areas of stone research have been exhausted and the body of literature available should suffice as background knowledge in those. Yet, to find meaningful mechanisms of clinically applicable stone prevention, the limited funds which are currently available should be used to research priority areas, of which crystal–cell interaction is envisioned by one of the present authors as being a crucial direction in future stone research. In the opinion of the second author, surgical stone treatment is very much technology-driven. This applies to the evolution of existing technologies and instruments. In addition, robotics, IT and communication software, and artificial intelligence are promising and are steadily making a meaningful impact in medicine in general, and endourology in particular. Finally, the third author believes that despite the exciting advances in technology, the role of the surgeon can never be replaced. The idea of a fully automated, artificially thinking and robotically performing system treating patients medically and surgically will not appeal to urologists or patients but may at least be a partial reality. His vision therefore is that surgical training will have to take on a new dimension, away from the patient and towards virtual reality, until the skill set is acceptably developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yasui T, Iguchi M, Suzuki S, Kohri K (2008) Prevalence and epidemiological characteristics of urolithiasis in Japan: national trends between 1965 and 2005. Urology 71:209–213

    Article  Google Scholar 

  2. Stamatelou KK, Francis ME, Jones CA et al (2003) Time trends in reported prevalence of kidney stones in the United States: 1976–1994. Kidney Int 63:1817–1823

    Article  Google Scholar 

  3. Hesse A, Brändle E, Wilbert D, Köhrmann KU, Alken P (2003) Study on the prevalence and incidence of urolithiasis in Germany comparing the years 1979 vs. 2000. Eur Urol 44:709–713

    Article  CAS  Google Scholar 

  4. Trinchieri A, Coppi F, Montanari E, Del Nero A, Zanetti G, Pisani E (2000) Increase in the prevalence of symptomatic upper urinary tract stones during the last ten years. Eur Urol 37:23–25

    Article  CAS  Google Scholar 

  5. Robertson WG (1990) Epidemiology of urinary stone disease. Urol Res 18:S3–S8

    Article  Google Scholar 

  6. Curhan GC (2007) Epidemiology of stone disease. Urol Clin N Am 34:287–293

    Article  Google Scholar 

  7. Romero V, Akpinar H, Assimos DG (2010) Kidney stones: a global picture of prevalence, incidence, and associated risk factors. Rev Urol 12(2–3):e86

    PubMed  PubMed Central  Google Scholar 

  8. Sorokin I, Mamoulakis C, Miyazawa K, Rodgers A, Talati J, Lotan Y (2017) Epidemiology of stone disease across the world. World J Urol 35(9):1301–1320

    Article  Google Scholar 

  9. Herring L (1962) Observations on the analysis of ten thousand urinary calculi. J Urol 88:545–562

    Article  CAS  Google Scholar 

  10. Gault MH, Chafe L (2000) Relationship of frequency, age, sex, stone weight and composition in 15,624 stones: comparison of results for 1980 to 1983 and 1995 to 1998. J Urol 164:302–307

    Article  CAS  Google Scholar 

  11. Daudon M, Bouzidi H, Bazin D (2010) Composition and morphology of phosphate stones and their relation with etiology. Urol Res 38:459–467

    Article  CAS  Google Scholar 

  12. Knoll T, Schubert AB, Fahlenkamp D, Leusmann DB, Wendt-Nordahl G, Schubert G (2011) Urolithiasis through the ages: data on more than 200,000 urinary stone analyses. J Urol 185:1304–1311

    Article  Google Scholar 

  13. Sun X, Shen L, Cong X, Zhu H, He L, Lu J (2011) Infrared spectroscopic analysis of 5,248 urinary stones from Chinese patients presenting with the first stone episode. Urol Res 39:339–343

    Article  CAS  Google Scholar 

  14. Millán F, Gracia S, Sánchez-Martín FM, Angerri O, Rousaud F, Villavicencio H (2011) A new approach to urinary stone analysis according to the combination of the components: experience with 7,949 cases. Actas Urol Esp 35:138–143

    Article  Google Scholar 

  15. Khan SR, Kok DJ (2004) Modulators of urinary stone formation. Front Biosci 9:1450–1482

    Article  CAS  Google Scholar 

  16. Ryall RL (2010) The possible roles of inhibitors, promoters, and macromolecules in the formation of calcium kidney stones. In: Rao NP, Preminger GM Kavanagh JP eds Urinary tract stone disease. Springer, London, pp 31–60

    Chapter  Google Scholar 

  17. Aggarwal KP, Narula S, Kakkar M, Tandon C (2013) Nephrolithiasis: molecular mechanism of renal stone formation and the critical role played by modulators. Biomed Res Int. https://doi.org/10.1155/2013/292953

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kok DJ, Khan SR (1994) Calcium oxalate nephrolithiasis, a free or fixed particle disease. Kidney Int 46:847–854

    Article  CAS  Google Scholar 

  19. Hess B, Kok DJ (1996) Nucleation, growth and aggregation of stone-forming crystals. In: Coe FL, Favus MJ, Pak CYC, Parks JH, Preminger GM (eds) Kidney stones: medical and surgical management. Lippincott-Raven, Philadelphia, pp 3–32

    Google Scholar 

  20. Rodgers AL (2014) Urinary saturation: casual or causal risk factor in urolithiasis? BJU Int 114:104–110

    Article  Google Scholar 

  21. Khan SR (2006) Renal tubular damage/dysfunction: key to the formation of kidney stones. Urol Res 34:86–91

    Article  Google Scholar 

  22. Evan AP, Worcester EM, Coe FL, Williams J, Lingeman JE (2015) Mechanisms of human kidney stone formation. Urolithiasis 43:19–32

    Article  Google Scholar 

  23. Sheng X, Jung T, Wesson JA, Ward MD (2005) Adhesion at calcium oxalate crystal surfaces and the effect of urinary constituents. Proc Nat Acad Sci USA 102:267–272

    Article  CAS  Google Scholar 

  24. Sakhaee K (2009) Recent advances in the pathophysiology of nephrolithiasis. Kidney Int 75:585–595

    Article  CAS  Google Scholar 

  25. Tiselius H-G (2011) A hypothesis of calcium stone formation: an interpretation of stone research during the past decades. Urol Res 39:231–243

    Article  Google Scholar 

  26. Coe FL, Evan AP, Worcester EM, Lingeman JE (2010) Three pathways for human kidney stone formation. Urol Res 38:147–160

    Article  Google Scholar 

  27. Robertson WG (2015) Potential role of fluctuations in the composition of renal tubular fluid through the nephron in the initiation of Randall’s plugs and calcium oxalate crystalluria in a computer model of renal function. Urolithiasis 43(Suppl 1):93–107

    Article  CAS  Google Scholar 

  28. Rodgers A, Allie-Hamdulay S, Jackson G, Tiselius H-G (2011) Simulating calcium salt precipitation in the nephron using chemical speciation. Urol Res 39:245–251

    Article  Google Scholar 

  29. Rassweiler J, Rassweiler MC, Frede T, Alken P (2014) Extracorporeal shock wave lithotripsy: an opinion on its future. Indian J Urol 30:73–79

    Article  Google Scholar 

  30. Méndez-Probst CE, Fernadez A, Erdeljan P, Vanjecek M, Cadieux PA, Razvi H (2011) Third prize: the impact of fluid environment manipulation on shockwave lithotripsy artificial calculi fragmentation rates. J Endourol 25:397–401

    Article  Google Scholar 

  31. Kronenberg P, Somani B (2018) Advances in lasers for the treatment of stones—a systematic review. Curr Urol Rep 19:45

    Article  Google Scholar 

  32. Cloutier J, Cordeiro ER, Kamphuis GM, Villa L, Letendre J, de la Rosette JJ, Traxer O (2014) The glue-clot technique: a new technique description for small calyceal stone fragments removal. Urolithiasis 42:441–444

    Article  CAS  Google Scholar 

  33. Siddiquia KM, Albala DM (2016) Robotic-assisted surgery and treatment of urolithiasis. Int J Surg 36:673–675

    Article  Google Scholar 

  34. Stoianovici D, Cadeddu JA, Demaree RD, Basile SA, Taylor RH, Whitcomb LL et al (1997) An efficient needle injection technique and radiological guidance method for percutaneous procedures. In: Proceedings 1st joint conference; CRVMed II & MRCAS III, Grenoble. pp. 295–298

  35. Lazarus J, Williams J (2011) The locator: novel percutaneous nephrolithotomy apparatus to aid collecting system puncture—a preliminary report. J Endourol 25:747–750

    Article  Google Scholar 

  36. Chowdhury PS, Nayak P, David D, Mallick S (2017) Mini access guide to simplify calyceal access during percutaneous nephrolithotomy: a novel device. Indian J Urol 33:319–322

    Article  Google Scholar 

  37. Zarrabi AD, Conradie JP, Heyns CF, Scheffer C, Schreve K (2010) Development of a computer assisted gantry system for gaining rapid and accurate calyceal access during percutaneous nephrolithotomy. Int Braz J Urol 36:738–746

    Article  CAS  Google Scholar 

  38. Chau HL, Chan HC, Li TB, Cheung MH, Lam KM, So HS (2016) An innovative free-hand puncture technique to reduce radiation in percutaneous nephrolithotomy using ultrasound with navigation system under magnetic field: a single-center experience in Hong Kong. J Endourol 30:160–164

    Article  Google Scholar 

  39. Mozer P, Conort P, Leroy A, Baumann M, Payan Y, Troccaz J et al (2007) Aid to percutaneous renal access by virtual projection of the ultrasound puncture tract onto fluoroscopic images. J Endourol 21:460–465

    Article  Google Scholar 

  40. Cadeddu JA, Bzostek A, Schreiner S, Barnes AC, Roberts WW, Anderson JH et al (1997) A robotic system for percutaneous renal access. J Urol 158:1589–1593

    Article  CAS  Google Scholar 

  41. Su LM, Stoianovici D, Jarrett TW, Patriciu A, Roberts WW, Cadeddu JA et al (2002) Robotic percutaneous access to the kidney: comparison with standard manual access. J Endourol 16:471–475

    Article  Google Scholar 

  42. Stoianovici D, Cleary K, Patriciu A, Mazilu D et al AcuBot (2003) A robot for radiological interventions. IEEE Trans Robot Autom 19:926–930

    Article  Google Scholar 

  43. Solomon SB, Patriciu A, Bohlman ME, Kavoussi LR et al (2002) Robotically driven interventions: a method of using CT fluoroscopy without radiation exposure to the physician. Radiology 225:277–282

    Article  Google Scholar 

  44. Stoianovici D, Kim C, Petrisor D, Jun C, Lim S, Ball MW, Ross A, Macura KJ, Allaf M (2017) MR safe robot, FDA clearance, safety and feasibility prostate biopsy clinical trial. IEEE ASME Trans Mechatron 22(1):115–126

    Article  Google Scholar 

  45. Oo MM, Gandhi HR, Chong KT, Goh JQ, Ng KW, Hein AT, Tan YK (2018) Automated needle targeting with X-ray (ANT-X)—robot-assisted device for percutaneous nephrolithotomy (PCNL) with its first successful use in human. J Endourol. https://doi.org/10.1089/end.2018.0003 (Epub ahead of print)

    Article  PubMed  Google Scholar 

  46. Ritter M, Rassweiler MC, Michel MS (2015) The Uro Dyna-CT enables three-dimensional planned laser-guided complex punctures. Eur Urol 68:880–884

    Article  Google Scholar 

  47. Jiao D, Zhang Z, Sun Z, Wang Y, Han X (2018) Percutaneous nephrolithotripsy: C-arm CT with 3D virtual navigation in non-dilated renal collecting systems. Diagn Interv Radiol 24:17–22

    Article  Google Scholar 

  48. Huber J, Wegner I, Meinzer HP et al (2011) Multimedia article. Navigated renal access using electromagnetic tracking: an initial experience. Surg Endosc 25:1307–1312

    Article  Google Scholar 

  49. Bauer J, Lee BR, Stoianovici D, Bishoff JT, Micali S, Micali F et al (2001) Remote percutaneous renal access using a new automated telesurgical robotic system. Telemed J E Health 7:341–346

    Article  CAS  Google Scholar 

  50. García-Cruz E, Bretonnet A, Alcaraz A (2018) Testing smart glasses in urology: clinical and surgical potential applications. Actas Urol Esp 42:207–211

    Article  Google Scholar 

  51. Teber D, Guven S, Simpfendörfer T, Baumhauer M, Güven EO, Yencilek F, Gözen AS, Rassweiler J (2009) Augmented reality: a new tool to improve surgical accuracy during laparoscopic partial nephrectomy? Preliminary in vitro and in vivo results. Eur Urol 56:332–338

    Article  Google Scholar 

  52. Nakamura K, Naya Y, Zenbutsu S et al (2010) Surgical navigation using three-dimensional computed tomography images fused intraoperatively with live video. J Endourol 24:521–524

    Article  Google Scholar 

  53. Rodrigues PL, Rodrigues NF, Fonseca J, Lima E, Vilac JL (2013) Kidney targeting and puncturing during percutaneous nephrolithotomy: recent advances and future perspectives. J Endourol 27:826–834

    Article  Google Scholar 

  54. Radecka E, Brehmer M, Holmgren K, Palm G, Magnusson P, Magnusson A (2006) Pelvicaliceal biomodeling as an aid to achieving optimal access in percutaneous nephrolithotripsy. J Endourol 20:92–101

    Article  CAS  Google Scholar 

  55. Bruyère F, Leroux C, Brunereau L, Lermusiaux P (2008) Rapid prototyping model for percutaneous nephrolithotomy training. J Endourol 22:91–96

    Article  Google Scholar 

  56. Bui D, Mach KE, Zlatev DV, Rouse RV, Leppert JT, Liao JC (2015) A pilot study of in vivo confocal laser endomicroscopy of upper tract urothelial carcinoma. J Endourol 29:1418–1423

    Article  Google Scholar 

  57. Balog J, Sasi-Szabó L, Kinross J, Lewis MR, Muirhead LJ, Veselkov K, Mirnezami R, Dezső B, Damjanovich L, Darzi A, Nicholson JK, Takáts Z (2013) Intraoperative tissue identification using rapid evaporative ionization mass spectrometry. Sci Transl Med 5:194

    Article  CAS  Google Scholar 

  58. Turing AM (1950) Computing machinery and intelligence. Mind 59:433–460

    Article  Google Scholar 

  59. Ramesh AN, Kambhampati C, Monson JRT, Drew PJ (2004) Artificial intelligence in medicine. Ann R Coll Surg Engl 86:334–338

    Article  CAS  Google Scholar 

  60. Pappas Y, Anandan C, Liu J, Car J, Sheikh A, Majeed (2011) A Computer-assisted history-taking systems (CAHTS) in health care: benefits, risks and potential for further development. Inform Prim Care 19:155–160

    PubMed  Google Scholar 

  61. Cahan A, Cimino JJ (2017) A learning health care system using computer-aided diagnosis. J Med Internet Res 19:e54

    Article  Google Scholar 

  62. Voran D (2015) Telemedicine and beyond. Mo Med 112:129–135

    PubMed  PubMed Central  Google Scholar 

  63. Choi PJ, Oskouian RJ, Tubbs RS (2018) Telesurgery: past, present, and future. Cureus 10:e2716

    PubMed  PubMed Central  Google Scholar 

  64. Kampmeijer R, Pavlova M, Tambor M, Golinowska S, Groot W (2016) The use of e-health and m-health tools in health promotion and primary prevention among older adults: a systematic literature review. BMC Health Serv Res 16(Suppl 5):290

    Article  Google Scholar 

  65. Bandodkar AJ, Wang J (2014) Non-invasive wearable electrochemical sensors: a review. Trends Biotechnol 32:363–371

    Article  CAS  Google Scholar 

  66. Kok DJ (2016) The preventive treatment of recurrent stone-formation: how can we improve compliance in the treatment of patients with recurrent stone disease? Urolithiasis 44:83–90

    Article  Google Scholar 

  67. Sen V, Aydogdu O, Yonguc T, Bozkurt IH, Bolat D (2016) Telerounding & telementoring for urological procedures. Arch Ital Urol Androl 88:206–207

    Article  Google Scholar 

  68. Ahmed K, Amer T, Challacombe B, Jaye P, Dasgupta P, Khan MS (2011) How to develop a simulation programme in urology. BJU Int 108:1698–1702

    Article  Google Scholar 

  69. Sweet RM, Hananel D, Lawrenz F (2010) A unified approach to validation, reliability, and education study design for surgical technical skills training. Arch Surg 145:197–201

    Article  Google Scholar 

  70. Ather MH, Ng CF, Pourmand G, Osther PJ (2014) Training the resident in percutaneous nephrolithotomy. Arab J Urol 12:49–53

    Article  Google Scholar 

  71. de la Rosette JJ, Laguna MP, Rassweiler JJ, Conort P (2008) Training in percutaneous nephrolithotomy–a critical review. Eur Urol 54:994–1003

    Article  Google Scholar 

  72. Raza SJ, Soomroo KQ, Ather MH (2011) “Latex glove” laparoscopic pyeloplasty model: a novel method for simulated training. J Urol 8:283–286

    Google Scholar 

  73. Inoue T, Okada S, Hamamoto S, Matsuda T (2017) New advanced bench model for flexible ureteroscopic training: the smart simulator. J Endourol. https://doi.org/10.1089/end.2017.0430

    Article  PubMed  Google Scholar 

  74. Al-Jabir A, Aydin A, Abe T, Raison N, Khan MS, Dasgupta P, Ahmed K (2017) Validation of the advanced scope trainer for flexible ureterorenoscopy training. Urology 110:45–50

    Article  Google Scholar 

  75. van der Poel H, Brinkman W, van Cleynenbreugel B, Kallidonis P, Stolzenburg JU, Liatsikos E, Ahmed K, Brunckhorst O, Khan MS, Do M, Ganzer R, Murphy DG, Van Rij S, Dundee PE, Dasgupta P (2016) Training in minimally invasive surgery in urology: European Association of Urology/International Consultation of Urological Diseases consultation. BJU Int 117:515–530

    Article  Google Scholar 

  76. Hull L, Arora S, Aggarwal R, Darzi A, Vincent C, Sevdalis N (2012) The impact of nontechnical skills on technical performance in surgery: a systematic review. J Am Coll Surg 214:214–230

    Article  Google Scholar 

  77. Mazzocco K, Petitti DB, Fong KT, Bonacum D, Brookey J, Graham S, Lasky RE, Sexton JB, Thomas EJ (2009) Surgical team behaviors and patient outcomes. Am J Surg 197:678–685

    Article  Google Scholar 

  78. Buchholz N (2017) The cooperation between urologists and nephrologists (video). https://www.youtube.com/watch?v=cTldLOURb6g. Accessed 16th Oct 2018

  79. Hess B (2017) Renal stone clinic survey: calcium stone formers’ self-declared understanding of and adherence to physician’s recommendations. Urolithiasis 45(4):363–370

    Article  CAS  Google Scholar 

  80. Raffin EP, Penniston KL, Antonelli JA, Viprakasit DP, Averch TD, Bird VG, Chew BH, Sivalingam S, Sur RL, Nakada SY, Pais VM Jr (2018) The effect of thiazide and potassium citrate use on the health related quality of life of patients with urolithiasis. J Urol. https://doi.org/10.1016/j.juro.2018.06.023

    Article  PubMed  Google Scholar 

Download references

Funding

This study received no funding from any source.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to N. Buchholz.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors

Additional information

U-merge Ltd. (Urology in Emerging Countries) is an academic urological platform dedicated to facilitate knowledge transfer in urology on all levels from developed to emerging countries. U-merge Ltd. is registered with the Companies House in London/ UK.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodgers, A., Trinchieri, A., Ather, M.H. et al. Vision for the future on urolithiasis: research, management, education and training—some personal views. Urolithiasis 47, 401–413 (2019). https://doi.org/10.1007/s00240-018-1086-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00240-018-1086-2

Keywords

Navigation