Advertisement

Urolithiasis

pp 1–16 | Cite as

Incorporation of osteopontin peptide into kidney stone-related calcium oxalate monohydrate crystals: a quantitative study

  • Jared S. Gleberzon
  • Yinyin Liao
  • Silvia Mittler
  • Harvey A. Goldberg
  • Bernd GroheEmail author
Original Paper
  • 62 Downloads

Abstract

Polyelectrolyte–crystal interactions regulate many aspects of biomineralization, including the shape, phase, and aggregation of crystals. Here, we quantitatively investigate the role of phosphorylation in interactions with calcium oxalate monohydrate crystals (COM), using synthetic peptides corresponding to the sequence 220–235 in osteopontin, a major inhibitor of kidney stone-related COM formation. COM formation is induced in the absence or presence of fluorescent-labeled peptides containing either no (P0), one (P1) or three (P3) phosphates and their adsorption to and incorporation into crystals determined using quantitative fluorimetry (also to determine maximum adsorption/incorporation), confocal/scanning electron microscopy and X-ray/Raman spectroscopy. Results demonstrate that higher phosphorylated peptides show stronger irreversible adsorption to COM crystals (P3: K0 ~ 66.4 × 106 M−1; P1: K0 ~ 29.4 × 106 M−1) and higher rates of peptide incorporation into crystals (maximum: P3: ~ 58.8 ng and P1: ~ 8.9 ng per µg of COM) than peptides containing less phosphate groups. However, crystals grown at that level of incorporable P3 show crystal-cleavage. Therefore, extrapolation of maximum incorporable P3 was carried out for crystals that are still intact, resulting in ~ 49.1 ng P3 µg−1 COM (or ~ 4.70 wt%). Both processes, adsorption and incorporation, proceed via the crystal faces {100} > {121} > {010} (from strongest to weakest), with X-ray and Raman spectroscopy indicating no significant effect on the crystal structure. This suggests a process in which the peptide is surrounded by growing crystal matrix and then incorporated. In general, knowing the quantity of impurities in crystalline/ceramic matrices (e.g., kidney stones) provides more control over stress/strain or solubilities, and helps to categorize such composites.

Keywords

Calcium oxalate monohydrate Osteopontin peptides Phosphorylation Quantitative peptide adsorption Quantitative peptide incorporation Kidney stone-related crystal growth 

Notes

Acknowledgements

The authors thank Todd Simpson (Western Nanofabrication Facility, Faculty of Science, UWO) for assistance with electron microscopy, François Lagugné-Labarthet (Department of Chemistry, UWO) for assistance in Raman analysis, Kem Rogers (Department of Anatomy and Cell Biology, UWO) for providing the confocal microscope and Holger Eichhorn (Department of Chemistry & Biochemistry, University of Windsor, Ontario) for providing the X-ray spectrometer. The expert technical assistance of Honghong Chen (Department of Physiology & Pharmacology, UWO) is gratefully acknowledged. These studies were supported by the Natural Sciences and Engineering Research Council of Canada (NSERC; Grant #: R6PIN-2014-05793) and the Canadian Institutes of Health Research of Canada (CIHR; Grant #: MOP130572). J.S.G. was the recipient of Studentships from the Canadian Association for Dental Research (CADR) and the Institute of Musculoskeletal Health and Arthritis (IMHA) of Canada.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Lowenstam HA, Weiner S (1989) On biomineralization. Oxford University Press, New YorkGoogle Scholar
  2. 2.
    Reis RL, Weiner S (2004) Learning from nature how to design new implantable biomaterials from biomineralization fundamentals to biomimetic materials and processing routes. Kluwer Academy, DordrechtGoogle Scholar
  3. 3.
    Mann S (1996) Biomimetic materials chemistry. Wiley-VCH, New YorkGoogle Scholar
  4. 4.
    Rotello V (2004) Nanoparticles—building blocks for nanotechnology. Kluwer Academic/Plenum, New YorkGoogle Scholar
  5. 5.
    Hunter GK, O’Young J, Grohe B, Karttunen M, Goldberg HA (2010) The flexible polyelectrolyte hypothesis of protein–biomineral interaction; feature article. Langmuir 26:18639–18646CrossRefGoogle Scholar
  6. 6.
    Berman A, Addadi L, Kvick A, Leiserowitz L, Nelson M, Weiner S (1990) Intercalation of sea-urchin proteins in calcite—study of a crystalline composite-material. Science 250:664–667CrossRefGoogle Scholar
  7. 7.
    Li HY, Estroff LA (2009) Calcite growth in hydrogels: assessing the mechanism of polymer-network incorporation into single crystals. Adv Mater 21:470–473CrossRefGoogle Scholar
  8. 8.
    Bushinsky DA (2001) Kidney stones. Adv Intern Med 47:219–238Google Scholar
  9. 9.
    Daudon M, Jungers P, Bazin D (2008) Peculiar morphology of stones in primary hyperoxaluria. N Engl J Med 359:100–102CrossRefGoogle Scholar
  10. 10.
    Lieske JC, Toback FG (2000) Renal cell-urinary crystal interactions. Curr Opin Nephrol Hypertens 9:349–355CrossRefGoogle Scholar
  11. 11.
    Millan A (2001) Crystal growth shape of whewellite polymorphs: influence of structure distortions on crystal shape. Cryst Growth Des 1:245–254CrossRefGoogle Scholar
  12. 12.
    Grohe B, Chan BPH, Sørensen ES, Lajoie G, Goldberg HA, Hunter GK (2011) Cooperation of phosphates and carboxylates controls calcium oxalate crystallization in ultrafiltered urine. Urol Res 39:327–338CrossRefGoogle Scholar
  13. 13.
    Grohe B, O’Young J, Langdon A, Karttunen M, Goldberg HA, Hunter GK (2011) Citrate modulates calcium oxalate crystal growth by face-specific interactions. Cells Tissues Organs 194:176–181CrossRefGoogle Scholar
  14. 14.
    Touryan LA, Clark RH, Gurney RW, Stayton PS, Kahr B, Vogel V (2001) Incorporation of fluorescent molecules and proteins into calcium oxalate monohydrate single. J Cryst Growth 233:380–388CrossRefGoogle Scholar
  15. 15.
    Tazzoli V, Domeneghetti C (1980) The crystal-structures of whewellite and weddellite—reexamination and comparison. Am Miner 65:327–334Google Scholar
  16. 16.
    Ryall RL, Fleming DE, Doyle IR, Evans NA, Dean CJ, Marshall VR (2001) Intracrystalline proteins and the hidden ultrastructure of calcium oxalate urinary crystals: implications for kidney stone formation. J Struct Biol 134:5–14CrossRefGoogle Scholar
  17. 17.
    Coe FL, Evan AP, Worcester EM, Lingeman JE (2010) Three pathways for human kidney stone formation. Urol Res 38:147–160CrossRefGoogle Scholar
  18. 18.
    Jaggi M, Nakagawa Y, Zipperle L, Hess B (2007) Tamm–Horsfall protein in recurrent calcium kidney stone formers with positive family history: abnormalities in urinary excretion, molecular structure and function. Urol Res 35:55–62CrossRefGoogle Scholar
  19. 19.
    Aggarwal A, Tessadri R, Grohe B (2015) Protein–crystal interactions in calcium oxalate kidney stone formation. Int J Biochem Biophys 3:34–48Google Scholar
  20. 20.
    Langdon A, Grohe B (2016) The osteopontin-controlled switching of calcium oxalate monohydrate morphologies in artificial urine provides insights into the formation of papillary kidney stones. Colloids Surf B Biointerfaces 146:296–306CrossRefGoogle Scholar
  21. 21.
    Asplin JR, Hoyer J, Gillespie C, Coe FL (1995) Uropontin (UP) inhibits aggregation of calcium-oxalate monohydrate (COM) crystals. J Am Soc Nephrol 6:941Google Scholar
  22. 22.
    Kumar V, de la Vega LP, Farell G, Lieske JC (2005) Urinary macromolecular inhibition of crystal adhesion to renal epithelial cells is impaired in male stone formers. Kidney Int 68:1784–1792CrossRefGoogle Scholar
  23. 23.
    Iguchi M, Takamura C, Umekawa T, Kurita T, Kohri K (1999) Inhibitory effects of female sex hormones on urinary stone formation in rats. Kidney Int 56:479–485CrossRefGoogle Scholar
  24. 24.
    Yagisawa T, Ito F, Osaka Y, Amano H, Kobayashi C, Toma H (2001) The influence of sex hormones on renal osteopontin expression and urinary constituents in experimental urolithiasis. J Urol 166:1078–1082CrossRefGoogle Scholar
  25. 25.
    Kellum KM, Lindberg JS, Hamm LL, Husserl FE, Burshell AL, Kok DJ, Westervelt C, Copley RB, Reisin E, Cole FEC (2001) Osteopontin inhibits calcium oxalate agglomeration in post menopausal stone formers. Am J Kidney Dis 37:A21–A21CrossRefGoogle Scholar
  26. 26.
    Dey J, Creighton A, Lindberg JS, Fuselier HA, Kok DJ, Cole FE, Hamm LL (2002) Estrogen replacement increased the citrate and calcium excretion rates in postmenopausal women with recurrent urolithiasis. J Urol 167:169–171CrossRefGoogle Scholar
  27. 27.
    Yu J, Yin B (2017) Postmenopausal hormone and the risk of nephrolithiasis: a meta-analysis. EXCLI J 16:986–994Google Scholar
  28. 28.
    Kok DJ, Khan SR (1994) Calcium-oxalate nephrolithiasis, a free or fixed particle disease. Kidney Int 46:847–854CrossRefGoogle Scholar
  29. 29.
    Fernandez JC, Delasnieves FJ, Salcedo JS, Hidalgoalvarez R (1990) The microelectrophoretic mobility and colloid stability of calcium-oxalate monohydrate dispersions in aqueous-media. J Colloid Interface Sci 135:154–164CrossRefGoogle Scholar
  30. 30.
    Chan BPH, Vincent K, Lajoie GA, Goldberg HA, Grohe B, Hunter GK (2012) On the catalysis of calcium oxalate dihydrate formation by osteopontin peptides. Colloids Surf B Biointerfaces 96:22–28CrossRefGoogle Scholar
  31. 31.
    Jung T, Sheng XX, Choi CK, Kim WS, Wesson JA, Ward MD (2004) Probing crystallization of calcium oxalate monohydrate and the role of macromolecule additives with in situ atomic force microscopy. Langmuir 20:8587–8596CrossRefGoogle Scholar
  32. 32.
    Sheng X, Jung T, Wesson JA, Ward MD (2005) Adhesion at calcium oxalate crystal surfaces and the effect of urinary constituents. Proc Natl Acad Sci USA 102:267–272CrossRefGoogle Scholar
  33. 33.
    Kok DJ (1995) Inhibitors of calcium oxalate crystallization. In: Khan SR (ed) Calcium oxalate in biological systems. CRC, Boca Raton, pp 23–36Google Scholar
  34. 34.
    Grohe B, Taller A, Vincent PL, Tieu LD, Rogers KA, Heiss A, Sorensen ES, Mittler S, Goldberg HA, Hunter GK (2009) Crystallization of calcium oxalates is controlled by molecular hydrophilicity and specific polyanion-crystal interactions. Langmuir 25:11635–11646CrossRefGoogle Scholar
  35. 35.
    Hunter GK, Grohe B, Jeffrey S, O’Young J, Sørensen ES, Goldberg HA (2009) Role of phosphate groups in inhibition of calcium oxalate crystal growth by osteopontin. Cells Tissues Organs 189:44–50CrossRefGoogle Scholar
  36. 36.
    Thurgood LA, Cook AF, Sorensen ES, Ryall RL (2010) Face-specific incorporation of osteopontin into urinary and inorganic calcium oxalate monohydrate and dihydrate crystals. Urol Res 38:357–376CrossRefGoogle Scholar
  37. 37.
    Khan SR, Kok DJ (2004) Modulators of urinary stone formation. Front Biosci 9:1450–1482CrossRefGoogle Scholar
  38. 38.
    Viswanathan P, Rimer JD, Kolbach AM, Ward MD, Kleinman JG, Wesson JA (2011) Calcium oxalate monohydrate aggregation induced by aggregation of desialylated Tamm–Horsfall protein. Urol Res 39:269–282CrossRefGoogle Scholar
  39. 39.
    Taller A, Grohe B, Rogers KA, Goldberg HA, Hunter GK (2007) Specific adsorption of osteopontin and synthetic polypeptides to calcium oxalate monohydrate crystals. Biophys J 93:1768–1777CrossRefGoogle Scholar
  40. 40.
    Grohe B, Hug S, Langdon A, Jalkanen J, Rogers KA, Goldberg HA, Karttunen M, Hunter GK (2012) Mimicking the biomolecular control of calcium oxalate monohydrate crystal growth: effect of contiguous glutamic acids. Langmuir 28:12182–12190CrossRefGoogle Scholar
  41. 41.
    Kazemi-Zanjani N, Chen HH, Goldberg HA, Hunter GK, Grohe B, Lagugne-Labarthet F (2012) Label-free mapping of osteopontin adsorption to calcium oxalate monohydrate crystals by tip-enhanced raman spectroscopy. J Am Chem Soc 134:17076–17082CrossRefGoogle Scholar
  42. 42.
    Grohe B, O’Young J, Ionescu DA, Lajoie G, Rogers KA, Karttunen M, Goldberg HA, Hunter GK (2007) Control of calcium oxalate crystal growth by face-specific adsorption of an osteopontin phosphopeptide. J Am Chem Soc 129:14946–14951CrossRefGoogle Scholar
  43. 43.
    O’Young J, Chirico S, Al Tarhuni N, Grohe B, Karttunen M, Goldberg HA, Hunter GK (2009) Phosphorylation of osteopontin peptides mediates adsorption to and incorporation into calcium oxalate crystals. Cell Tissues Org 189:51–55Google Scholar
  44. 44.
    Farmanesh S, Ramamoorthy S, Chung JH, Asplin JR, Karande P, Rimer JD (2014) Specificity of growth inhibitors and their cooperative effects in calcium oxalate monohydrate crystallization. J Am Chem Soc 136:367–376CrossRefGoogle Scholar
  45. 45.
    Cabrera N, Vermilyea DA (1958) The growth of crystals from solution. In: Doremus RH, Roberts BW, Turnbul D (eds) Growth and perfection of crystals—proceedings of the international conference, cooperstown. Wiley, New York, pp 393–410Google Scholar
  46. 46.
    Weaver ML, Qiu SR, Hoyer JR, Casey WH, Nancollas GH, De Yoreo JJ (2007) Inhibition of calcium oxalate monohydrate growth by citrate and the effect of the background electrolyte. J Cryst Growth 306:135–145CrossRefGoogle Scholar
  47. 47.
    De Yoreo JJ, Vekilov PG (2003) Principles of crystal nucleation and growth. In: Dove PM, De Yoreo JJ, Weiner S (eds) Biomineralization mineralogical society of america. Geochemical Society, Washington, pp 57–93Google Scholar
  48. 48.
    Nene SS, Hunter GK, Goldberg HA, Hutter JL (2013) Reversible inhibition of calcium oxalate monohydrate growth by an osteopontin phosphopeptide. Langmuir 29:6287–6295CrossRefGoogle Scholar
  49. 49.
    Grohe B, Rogers KA, Goldberg HA, Hunter GK (2006) Crystallization kinetics of calcium oxalate hydrates studied by scanning confocal interference microscopy. J Cryst Growth 295:148–157CrossRefGoogle Scholar
  50. 50.
    Ster A, Safranko S, Bilic K, Markovic B, Kralj D (2018) The effect of hydrodynamic and thermodynamic factors and the addition of citric acid on the precipitation of calcium oxalate dihydrate. Urolithiasis 46:243–256CrossRefGoogle Scholar
  51. 51.
    Schmidt MJ (1979) Understanding and using statistics: basic concepts. Heath, LexingtonGoogle Scholar
  52. 52.
    Hug S, Grohe B, Jalkanen J, Chan BPH, Galarreta B, Vincent K, Lagugné-Labarthet F, Lajoie G, Goldberg HA, Karttunen M, Hunter GK (2012) Mechanism of inhibition of calcium oxalate crystal growth by an osteopontin phosphopeptide. Soft Matter 8:1226–1233CrossRefGoogle Scholar
  53. 53.
    Deutsch M, Forster E, Holzer G, Hartwig J, Hamalainen K, Kao CC, Huotari S, Diamant R (2004) X-ray spectrometry of copper: new results on an old subject. J Res Nat Inst Stand Technol 109:75–98CrossRefGoogle Scholar
  54. 54.
    Königsberger E, Königsberger L-C (2001) Thermodynamic modeling of crystal deposition in humans. J Pure Appl Chem 73:785–797CrossRefGoogle Scholar
  55. 55.
    Alberty RA, Silbey RJ (1992) Physical chemistry. Wiley, New YorkGoogle Scholar
  56. 56.
    Shippey TA (1980) Vibrational studies of calcium-oxalate monohydrate (whewellite) and an anhydrous phase of calcium-oxalate. J Mol Struct 63:157–166CrossRefGoogle Scholar
  57. 57.
    Frost RL, Weier ML (2004) Thermal treatment of whewellite—a thermal analysis and Raman spectroscopic study. Thermochim Acta 409:79–85CrossRefGoogle Scholar
  58. 58.
    Xiao Y, Karttunen M, Jalkanen J, Mussi MCM, Liao Y, Grohe B, Lagugne-Labarthet F, Siqueira WL (2015) Hydroxyapatite growth inhibition effect of pellicle statherin peptides. J Dent Res 94:1106–1112CrossRefGoogle Scholar
  59. 59.
    Hug S, Hunter GK, Goldberg H, Karttunen M (2010) Ab initio simulations of peptide-mineral interactions. Recent Dev Comput Simul Stud Condens Matter Phys 4:51–60Google Scholar
  60. 60.
    Kok DJ, Blomen LJMJ, Westbroek P, Bijvoet OLM (1986) Polysaccharide from coccoliths (CaCo3 biomineral)—influence on crystallization of calcium-oxalate monohydrate. Eur J Biochem 158:167–172CrossRefGoogle Scholar
  61. 61.
    Haynes CA, Norde W (1994) Globular proteins at solid/liquid interfaces. Colloids Surf B Biointerfaces 2:517–566CrossRefGoogle Scholar
  62. 62.
    Tsortos A, Nancollas GH (1999) The adsorption of polyelectrolytes on hydroxyapatite crystals. J Colloid Interface Sci 209:109–115CrossRefGoogle Scholar
  63. 63.
    Lin YP, Singer PC, Aiken GR (2005) Inhibition of calcite precipitation by natural organic material: kinetics, mechanism, and thermodynamics. Environ Sci Technol 39:6420–6428CrossRefGoogle Scholar
  64. 64.
    Dimova R, Lipowsky R, Mastai Y, Antonietti M (2003) Binding of polymers to calcite crystals in water: characterization by isothermal titration calorimetry. Langmuir 19:6097–6103CrossRefGoogle Scholar
  65. 65.
    Wesson JA, Worcester EM, Wiessner JH, Mandel NS, Kleinman JG (1998) Control of calcium oxalate crystal structure and cell adherence by urinary macromolecules. Kidney Int 53:952–957CrossRefGoogle Scholar
  66. 66.
    Wikiel K, Burke EM, Perich JW, Reynolds EC, Nancollas GH (1994) Hydroxyapatite mineralization and demineralization in the presence of synthetic phosphorylated pentapeptides. Arch Oral Biol 39:715–721CrossRefGoogle Scholar
  67. 67.
    Goiko M, Dierolf J, Gleberzon JS, Liao YY, Grohe B, Goldberg HA, de Bruyn JR, Hunter GK (2013) Peptides of matrix GLA protein inhibit nucleation and growth of hydroxyapatite and calcium oxalate monohydrate crystals. Plos One 8:e80344CrossRefGoogle Scholar
  68. 68.
    Wu WJ, Nancollas GH (1996) Interfacial free energies and crystallization in aqueous media. J Colloid Interface Sci 182:365–373CrossRefGoogle Scholar
  69. 69.
    Grohe B (2017) Synthetic peptides derived from salivary proteins and the control of surface charge densities of dental surfaces improve the inhibition of dental calculus formation. Mater Sci Eng C 77:58–68CrossRefGoogle Scholar
  70. 70.
    Wang L (1996) Adsorption of (poly)maleic acid and aquatic fulvic acids by goethite in: environmental sciences. The Ohio State University, ColumbusGoogle Scholar
  71. 71.
    Grohe B, Miehe G, Wegner G (2001) Additive controlled crystallization of barium titanate powders and their application for thin-film ceramic production: part II. From nano-sized powders to ceramic thin films. J Mater Res 16:1911–1915CrossRefGoogle Scholar
  72. 72.
    Elhadj S, De Yoreo JJ, Hoyer JR, Dove PM (2006) Role of molecular charge and hydrophilicity in regulating the kinetics of crystal growth. Proc Natl Acad Sci USA 103:19237–19242CrossRefGoogle Scholar
  73. 73.
    Sethmann I, Grohe B, Kleebe HJ (2014) Replacement of hydroxylapatite by whewellite: implications for kidney-stone formation. Mineral Mag 78:91–100CrossRefGoogle Scholar
  74. 74.
    Beck BB, Baasner A, Buescher A, Habbig S, Reintjes N, Kemper MJ, Sikora P, Mache C, Pohl M, Stahl M, Toenshoff B, Pape L, Fehrenbach H, Jacob DE, Grohe B, Wolf MT, Nurnberg G, Yigit G, Salido EC, Hoppe B (2013) Novel findings in patients with primary hyperoxaluria type III and implications for advanced molecular testing strategies. Eur J Hum Genet 21:162–172CrossRefGoogle Scholar
  75. 75.
    Walton RC, Kavanagh JP, Heywood BR (2003) The density and protein content of calcium oxalate crystals precipitated from human urine: a tool to investigate ultrastructure and the fractional volume occupied by organic matrix. J Struct Biol 143:14–23CrossRefGoogle Scholar
  76. 76.
    Hoyer JR (1994) Uropontin in urinary calcium stone formation. Miner Electrolyte Metab 20:385–392Google Scholar
  77. 77.
    Warpehoski MA, Buscemi PJ, Osborn DC, Finlayson B, Goldberg EP (1981) Distribution of organic matrix in calcium-oxalate renal calculi. Calcif Tissue Int 33:211–222CrossRefGoogle Scholar
  78. 78.
    Jacob DE, Grohe B, Gessner M, Beck BB, Hoppe B (2013) Kidney stones in primary hyperoxaluria: new lessons learnt. Plos One 8:e70617CrossRefGoogle Scholar
  79. 79.
    Sethmann I, Wendt-Nordahl G, Knoll T, Enzmann F, Simon L, Kleebe HJ (2017) Microstructures of Randall’s plaques and their interfaces with calcium oxalate monohydrate kidney stones reflect underlying mineral precipitation mechanisms. Urolithiasis 45:235–248CrossRefGoogle Scholar
  80. 80.
    Kurz W, Fisher DJ (1998) Fundamentals of solidification. Trans Tech Publications Ltd., ZürichGoogle Scholar
  81. 81.
    Fleming DE, Van Riessen A, Chauvet MC, Grover PK, Hunter B, Van Bronswijk W, Ryall RL (2003) Intracrystalline proteins and urolithiasis: a synchrotron X-ray diffraction study of calcium oxalate monohydrate. J Bone Miner Res 18:1282–1291CrossRefGoogle Scholar
  82. 82.
    Langdon A, Wignall GR, Rogers KA, Sørensen ES, Denstedt J, Grohe B, Goldberg HA, Hunter GK (2009) Kinetics of calcium oxalate crystal growth in the presence of osteopontin isoforms: an analysis by scanning confocal interference microcopy. Calcif Tissue Int 84:240–248CrossRefGoogle Scholar
  83. 83.
    Kleber W, Bautsch H-J (1977) Einführung in die Kristallographie. Verl. Technik, BerlinGoogle Scholar
  84. 84.
    Cho KR, Kim YY, Yang PC, Cai W, Pan HH, Kulak AN, Lau JL, Kulshreshtha P, Armes SP, Meldrum FC, De Yoreo JJ (2016) Direct observation of mineral-organic composite formation reveals occlusion mechanism. Nat Commun 7:10187CrossRefGoogle Scholar
  85. 85.
    Aizenberg J, Hanson J, Ilan M, Leiserowitz L, Koetzle TF, Addadi L, Weiner S (1995) Morphogenesis of calcitic sponge spicules—a role for specialized proteins interacting with growing crystals. Faseb J 9:262–268CrossRefGoogle Scholar
  86. 86.
    Swift DM, Sikes CS, Wheeler AP (1986) Analysis and function of organic matrix from sea-urchin tests. J Exp Zool 240:65–73CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biochemistry Schulich School of Medicine and DentistryUniversity of Western OntarioLondonCanada
  2. 2.School of Dentistry, Schulich School of Medicine and DentistryUniversity of Western OntarioLondonCanada
  3. 3.Department of Physics and AstronomyUniversity of Western OntarioLondonCanada
  4. 4.Department of Chemical and Biochemical EngineeringUniversity of Western OntarioLondonCanada

Personalised recommendations