Advertisement

Urolithiasis

, Volume 44, Issue 4, pp 289–297 | Cite as

Ascorbic acid intake and oxalate synthesis

  • John Knight
  • Kumudu Madduma-Liyanage
  • James A. Mobley
  • Dean G. Assimos
  • Ross P. Holmes
Invited Review

Abstract

In humans, approximately 60 mg of ascorbic acid (AA) breaks down in the body each day and has to be replaced by a dietary intake of 70 mg in women and 90 mg in men to maintain optimal health and AA homeostasis. The breakdown of AA is non-enzymatic and results in oxalate formation. The exact amount of oxalate formed has been difficult to ascertain primarily due to the limited availability of healthy human tissue for such research and the difficulty in measuring AA and its breakdown products. The breakdown of 60 mg of AA to oxalate could potentially result in the formation of up to 30 mg oxalate per day. This exceeds our estimates of the endogenous production of 10–25 mg oxalate per day, indicating that degradative pathways that do not form oxalate exist. In this review, we examine what is known about the pathways of AA metabolism and how oxalate forms. We further identify how gaps in our knowledge may be filled to more precisely determine the contribution of AA breakdown to oxalate production in humans. The use of stable isotopes of AA to directly assess the conversion of vitamin to oxalate should help fill this void.

Keywords

Ascorbate Vitamin C Oxalate Metabolism 

Notes

Acknowledgments

Funded in part by NIH Grant DK73732.

Compliance with ethical standards

Funding

This work was supported in part by NIH grant and DK73732.

Conflict of interest

Authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by the investigators.

References

  1. 1.
    Hellman L, Burns JJ (1958) Metabolism of l-ascorbic acid-1-C14 in man. J Biol Chem 230:923–930PubMedGoogle Scholar
  2. 2.
    Atkins GL, Dean BM, Griffin WJ, Watts RWE (1964) Quantitative aspects of ascorbic acid metabolism in man. J Biol Chem 239:2975–2980PubMedGoogle Scholar
  3. 3.
    Baker EM, Saari JC, Tolbert BM (1966) Ascorbic acid metabolism in man. Amer J Clin Nutr 19:371–378PubMedGoogle Scholar
  4. 4.
    Chalmers AH, Cowley DM (1985) Stability of ascorbate in urine: relevance to analyses for ascorbate and oxalate. Clin Chem 31:1703–1705PubMedGoogle Scholar
  5. 5.
    Mazzachi BC, Teubner JK, Ryall RL (1984) Factors affecting measurement of urinary oxalate. Clin Chem 30:1339–1343PubMedGoogle Scholar
  6. 6.
    Taylor EN, Stampfer MJ, Curhan GC (2004) Dietary factors and the risk of incident kidney stones in men: new insights after 14 years of follow-up. J Am Soc Nephrol JASN 15:3225–3232CrossRefPubMedGoogle Scholar
  7. 7.
    Thomas LD, Elinder CG, Tiselius HG, Wolk A, Akesson A (2013) Ascorbic acid supplements and kidney stone incidence among men: a prospective study. JAMA Intern Med 173:386–388CrossRefPubMedGoogle Scholar
  8. 8.
    Lawton JM, Conway LT, Crosson JT, Smith CL, Abraham PA (1985) Acute oxalate nephropathy after massive ascorbic acid administration. Arch Intern Med 145:950–951CrossRefPubMedGoogle Scholar
  9. 9.
    Lamarche J, Nair R, Peguero A, Courville C (2011) Vitamin C-induced oxalate nephropathy. Int J Nephrol 2011:146927CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Nasr SH, Kashtanova Y, Levchuk V, Markowitz GS (2006) Secondary oxalosis due to excess vitamin C intake. Kidney Int 70:1672CrossRefPubMedGoogle Scholar
  11. 11.
    Mashour S, Turner JF Jr, Merrell R (2000) Acute renal failure, oxalosis, and vitamin C supplementation: a case report and review of the literature. Chest 118:561–563CrossRefPubMedGoogle Scholar
  12. 12.
    Alkhunaizi AM, Chan L (1996) Secondary oxalosis: a cause of delayed recovery of renal function in the setting of acute renal failure. J Am Soc Nephrol: JASN 7:2320–2326PubMedGoogle Scholar
  13. 13.
    Robitaille L, Mamer OA, Miller WH Jr, Levine M, Assouline S, Melnychuk D, Rousseau C, Hoffer LJ (2009) Oxalic acid excretion after intravenous ascorbic acid administration. Metab Clin Exp 58:263–269CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Taylor EN, Curhan GC (2008) Determinants of 24-hour urinary oxalate excretion. Clin J Am Soc Nephrol: CJASN 3:1453–1460CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Halliwell B (2001) Vitamin C and genomic stability. Mutat Res 475:29–35CrossRefPubMedGoogle Scholar
  16. 16.
    Nishikimi M, Yagi K (1991) Molecular basis for the deficiency in humans of gulonolactone oxidase, a key enzyme for ascorbic acid biosynthesis. Am J Clin Nutr 54:1203S–1208SPubMedGoogle Scholar
  17. 17.
    Grano A, De Tullio MC (2007) Ascorbic acid as a sensor of oxidative stress and a regulator of gene expression: the Yin and Yang of vitamin C. Med Hypotheses 69:953–954CrossRefPubMedGoogle Scholar
  18. 18.
    Du J, Cullen JJ, Buettner GR (2012) Ascorbic acid: chemistry, biology and the treatment of cancer. Biochim Biophys Acta 1826:443–457PubMedPubMedCentralGoogle Scholar
  19. 19.
    Linster CL, Van Schaftingen E (2007) Vitamin C. Biosynthesis, recycling and degradation in mammals. FEBS J 274:1–22CrossRefPubMedGoogle Scholar
  20. 20.
    Holmes RP, Goodman HO, Assimos DG (2001) Contribution of dietary oxalate to urinary oxalate excretion. Kidney Int 59:270–276CrossRefPubMedGoogle Scholar
  21. 21.
    Knight J, Assimos DG, Callahan MF, Holmes RP (2011) Metabolism of primed, constant infusions of [1,2-(13)C(2)] glycine and [1-(13)C(1)] phenylalanine to urinary oxalate. Metab Clin Exp 60:950–956CrossRefPubMedGoogle Scholar
  22. 22.
    Knight J, Jiang J, Assimos DG, Holmes RP (2006) Hydroxyproline ingestion and urinary oxalate and glycolate excretion. Kidney Int 70:1929–1934CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Holmes RP, Kennedy M (2000) Estimation of the oxalate content of foods and daily oxalate intake. Kidney Int 57:1662–1667CrossRefPubMedGoogle Scholar
  24. 24.
    von Unruh GE, Voss S, Sauerbruch T, Hesse A (2003) Reference range for gastrointestinal oxalate absorption measured with a standardized [13C2] oxalate absorption test. J Urol 169:687–690CrossRefGoogle Scholar
  25. 25.
    Fan X, Sokorai KJ (2011) Changes in quality, liking, and purchase intent of irradiated fresh-cut spinach during storage. J Food Sci 76:S363–S368CrossRefPubMedGoogle Scholar
  26. 26.
    Jansson PJ, Jung HR, Lindqvist C, Nordstrom T (2004) Oxidative decomposition of vitamin C in drinking water. Free Radical Res 38:855–860CrossRefGoogle Scholar
  27. 27.
    Burzle M, Suzuki Y, Ackermann D, Miyazaki H, Maeda N, Clemencon B, Burrier R, Hediger MA (2013) The sodium-dependent ascorbic acid transporter family SLC23. Mol Asp Med 34:436–454CrossRefGoogle Scholar
  28. 28.
    Corpe CP, Eck P, Wang J, Al-Hasani H, Levine M (2013) Intestinal dehydroascorbic acid (DHA) transport mediated by the facilitative sugar transporters, GLUT2 and GLUT8. J Biol Chem 288:9092–9101CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Kallner A, Hartmann D, Hornig D (1977) On the absorption of ascorbic acid in man. Int J Vitam Nutr Res. Int Z fur Vitam und Ernahrungsforschung. J Int de Vitaminol et de Nutr 47:383–388Google Scholar
  30. 30.
    Levine M, Conry-Cantilena C, Wang Y, Welch RW, Washko PW, Dhariwal KR, Park JB, Lazerev A, Graumlich JF, King J, Cantilena LR (1996) Vitamin C pharmacokinetics in healthy volunteers: evidence for a recommended dietary allowance. Proc Natl Acad Sci 93:3704–3709CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Bluck LJ, Izzard AP, Bates CJ (1996) Measurement of ascorbic acid kinetics in man using stable isotopes and gas chromatography/mass spectrometry. J Mass Spectrom: JMS 31:741–748CrossRefPubMedGoogle Scholar
  32. 32.
    Kallner A, Hartmann D, Hornig D (1979) Steady-state turnover and body pool of ascorbic acid in man. Am J Clin Nutr 32:530–539PubMedGoogle Scholar
  33. 33.
    Omaye ST, Schaus EE, Kutnink MA, Hawkes WC (1987) Measurement of vitamin C in blood components by high-performance liquid chromatography. Implication in assessing vitamin C status. Ann New York Acad Sci 498:389–401CrossRefGoogle Scholar
  34. 34.
    Levine M, Wang Y, Padayatty SJ, Morrow J (2001) A new recommended dietary allowance of vitamin C for healthy young women. Proc Natl Acad Sci USA 98:9842–9846CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Baker PR, Cramer SD, Kennedy M, Assimos DG, Holmes RP (2004) Glycolate and glyoxylate metabolism in HepG2 cells. Amer J Physiol 287:C1359–C1365CrossRefGoogle Scholar
  36. 36.
    Knight J, Holmes RP, Cramer SD, Takayama T, Salido E (2012) Hydroxyproline metabolism in mouse models of primary hyperoxaluria. Am J Physiol. Renal Physiol 302:F688–F693CrossRefPubMedGoogle Scholar
  37. 37.
    Corti A, Casini AF, Pompella A (2010) Cellular pathways for transport and efflux of ascorbate and dehydroascorbate. Arch Biochem Biophys 500:107–115CrossRefPubMedGoogle Scholar
  38. 38.
    Rumsy SC, Levine M (1998) Absorption, transport, and disposition of ascorbic acid in humans. Nutr Biochem 9:116–130CrossRefGoogle Scholar
  39. 39.
    Levine M, Padayatty SJ, Espey MG (2011) Vitamin C: a concentration-function approach yields pharmacology and therapeutic discoveries. Adv Nutr 2:78–88CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Stephenson CM, Levin RD, Spector T, Lis CG (2013) Phase I clinical trial to evaluate the safety, tolerability, and pharmacokinetics of high-dose intravenous ascorbic acid in patients with advanced cancer. Cancer Chemother Pharmacol 72:139–146CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Yun J, Mullarky E, Lu C, Bosch KN, Kavalier A, Rivera K, Roper J, Chio II, Giannopoulou EG, Rago C, Muley A, Asara JM, Paik J, Elemento O, Chen Z, Pappin DJ, Dow LE, Papadopoulos N, Gross SS, Cantley LC (2015) Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH. Science 350:1391–1396CrossRefPubMedGoogle Scholar
  42. 42.
    Park JB, Levine M (1996) Purification, cloning and expression of dehydroascorbic acid-reducing activity from human neutrophils: identification as glutaredoxin. Biochem J 315(Pt 3):931–938CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Simpson GL, Ortwerth BJ (2000) The non-oxidative degradation of ascorbic acid at physiological conditions. Biochim Biophys Acta 1501:12–24CrossRefPubMedGoogle Scholar
  44. 44.
    Nemet I, Monnier VM (2011) Vitamin C degradation products and pathways in the human lens. J Biol Chem 286:37128–37136CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Gál I (1936) Estimation of ascorbic acid (vitamin C) by titration. Nature 138:799CrossRefGoogle Scholar
  46. 46.
    Moeslinger T, Brunner M, Volf I, Spieckermann PG (1995) Spectrophotometric determination of ascorbic acid and dehydroascorbic acid. Clin Chem 41:1177–1181PubMedGoogle Scholar
  47. 47.
    Lee W, Roberts SM, Labbe RF (1997) Ascorbic acid determination with an automated enzymatic procedure. Clin Chem 43:154–157PubMedGoogle Scholar
  48. 48.
    Lykkesfeldt J (2007) Ascorbate and dehydroascorbic acid as reliable biomarkers of oxidative stress: analytical reproducibility and long-term stability of plasma samples subjected to acidic deproteinization. Cancer Epidemiol Biomark Prev 16:2513–2516CrossRefGoogle Scholar
  49. 49.
    Chen Z, Chen B, Yao S (2006) High-performance liquid chromatography/electrospray ionization-mass spectrometry for simultaneous determination of taurine and 10 water-soluble vitamins in multivitamin tablets. Anal Chim Acta 569:169–175CrossRefGoogle Scholar
  50. 50.
    Shui G, Leong LP (2004) Analysis of polyphenolic antioxidants in star fruit using liquid chromatography and mass spectrometry. J Chromatogr A 1022:67–75CrossRefPubMedGoogle Scholar
  51. 51.
    Szultka M, Buszewska-Forajta M, Kaliszan R, Buszewski B (2014) Determination of ascorbic acid and its degradation products by high-performance liquid chromatography-triple quadrupole mass spectrometry. Electrophoresis 35:585–592CrossRefPubMedGoogle Scholar
  52. 52.
    Fenoll J, Martinez A, Hellin P, Flores P (2011) Simultaneous determination of ascorbic and dehydroascorbic acids in vegetables and fruits by liquid chromatography with tandem mass spectrometry. Food Chem 127:340–344CrossRefGoogle Scholar
  53. 53.
    Wang H, Jiang J, Hu P (2006) Determination of l-threonate in human plasma and urine by high performance liquid chromatography-tandem mass spectrometry. J Chromatogr. B Anal Technol Biomed Life Sci 834:155–162CrossRefGoogle Scholar
  54. 54.
    Deutsch JC (1998) Spontaneous hydrolysis and dehydration of dehydroascorbic acid in aqueous solution. Anal Biochem 260:223–229CrossRefPubMedGoogle Scholar
  55. 55.
    Traxer O, Huet B, Poindexter J, Pak CY, Pearle MS (2003) Effect of ascorbic acid consumption on urinary stone risk factors. J Urol 170:397–401CrossRefPubMedGoogle Scholar
  56. 56.
    Baxmann AC, De OGMC, Heilberg IP (2003) Effect of vitamin C supplements on urinary oxalate and pH in calcium stone-forming patients. Kidney Int 63:1066–1071CrossRefPubMedGoogle Scholar
  57. 57.
    Khan SR (2012) Is oxidative stress, a link between nephrolithiasis and obesity, hypertension, diabetes, chronic kidney disease, metabolic syndrome? Urol Res 40:95–112CrossRefPubMedGoogle Scholar
  58. 58.
    Ribeiro DO, Pinto DC, Lima LM, Volpato NM, Cabral LM, de Sousa VP (2011) Chemical stability study of vitamins thiamine, riboflavin, pyridoxine and ascorbic acid in parenteral nutrition for neonatal use. Nutr J 10:47CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Holmes RP, Goodman HO, Assimos DG (1995) Dietary oxalate and its intestinal absorption. Scan Microsc 9:1109–1120Google Scholar
  60. 60.
    Pena de la Vega L, Lieske JC, Milliner D, Gonyea J, Kelly DG (2004) Urinary oxalate excretion increases in home parenteral nutrition patients on a higher intravenous ascorbic acid dose. JPEN J Parenter Enter Nutr 28:435–438CrossRefGoogle Scholar
  61. 61.
    Pauling L (1970) Evolution and the need for ascorbic acid. Proc Natl Acad Sci USA 67:1643–1648CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Padayatty SJ, Sun AY, Chen Q, Espey MG, Drisko J, Levine M (2010) Vitamin C: intravenous use by complementary and alternative medicine practitioners and adverse effects. PLoS One 5:e11414CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Cossey LN, Rahim F, Larsen CP (2013) Oxalate nephropathy and intravenous vitamin C. Am J Kidney Dis 61:1032–1035CrossRefPubMedGoogle Scholar
  64. 64.
    Rathi S, Kern W, Lau K (2007) Vitamin C-induced hyperoxaluria causing reversible tubulointerstitial nephritis and chronic renal failure: a case report. J Med Case Rep 1:155CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Wong K, Thomson C, Bailey RR, McDiarmid S, Gardner J (1994) Acute oxalate nephropathy after a massive intravenous dose of vitamin C. Aust N Z J Med 24:410–411CrossRefPubMedGoogle Scholar
  66. 66.
    McHugh GJ, Graber ML, Freebairn RC (2008) Fatal vitamin C-associated acute renal failure. Anaesth Intensive Care 36:585–588Google Scholar
  67. 67.
    Gurm H, Sheta MA, Nivera N, Tunkel A (2012) Vitamin C-induced oxalate nephropathy: a case report. J Community Hosp Intern Med Perspect 2:17718Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • John Knight
    • 1
  • Kumudu Madduma-Liyanage
    • 1
  • James A. Mobley
    • 2
  • Dean G. Assimos
    • 1
  • Ross P. Holmes
    • 1
  1. 1.Department of UrologyUniversity of Alabama at BirminghamBirminghamUSA
  2. 2.Department of SurgeryUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations