Urolithiasis

, Volume 41, Issue 2, pp 169–177 | Cite as

Prediction of postoperative pain after percutaneous nephrolithotomy: can preoperative experimental pain assessment identify patients at risk?

  • Katja Venborg Pedersen
  • Anne Estrup Olesen
  • Palle Jørn Sloth Osther
  • Lars Arendt-Nielsen
  • Asbjørn Mohr Drewes
Original Paper

Abstract

Postoperative pain remains a significant problem and the individual variance in postoperative pain is not fully understood. In recent years, there has been focus on identifying risk factors predicting patients with high postoperative pain intensity or consumption of analgesics, which may facilitate an improvement in rehabilitation. This study evaluates the relationship between preoperative experimental pain assessment and postoperative pain and opioid consumption. Forty-four patients with uni- or bilateral kidney stone disease scheduled for percutaneous nephrolithotomy were included. The preoperative pain thresholds were measured using electrical (single and 5 repeated) and pressure pain stimulation over the flank bilaterally (stone-side = operation side and control-side = non-operation side). Postoperative pain scores were recorded on a numerical rating scale and analgesic consumption was registered. The responses to repeated electrical stimuli (temporal summation) were preoperatively increased on the stone-side compared to the control-side (P = 0.016). Preoperative electrical pain thresholds from the control-side correlated inversely with postoperative opioid consumption (single stimuli: ρ = −0.43, P < 0.01; repeated stimuli: ρ = −0.45, P < 0.005). This correlation was more pronounced for the 22 patients with unilateral renal calculi (single stimuli: ρ = −0.54, P < 0.02; repeated stimuli: ρ = −0.58, P < 0.01). There were no other correlations between the preoperative sensory tests and postoperative pain or opioid consumption. This study showed a correlation between the preoperative electrical pain thresholds on the control-side and postoperative opioid consumption after percutaneous nephrolithotomy. Preoperative measurement of the electrical pain thresholds may, therefore, be useful as a screening tool to identify patients at high risk of postoperative pain.

Keywords

Postoperative pain PCNL Pain prediction Quantitative sensory testing Temporal summation 

References

  1. 1.
    Kehlet H, Wilmore DW (2008) Evidence-based surgical care and the evolution of fast-track surgery. Ann Surg 248(2):189–198PubMedCrossRefGoogle Scholar
  2. 2.
    Costantini R, Affaitati G (2011) Controlling pain in the post-operative setting. Int J Clin Pharmacol Ther 49(2):116–127PubMedGoogle Scholar
  3. 3.
    Kehlet H, Jensen TS, Woolf CJ (2006) Persistent postsurgical pain: risk factors and prevention. Lancet 367(9522):1618–1625PubMedCrossRefGoogle Scholar
  4. 4.
    Kalkman C, Visser K, Moen J, Bonsel G, Grobbee D, Moons KG (2003) Preoperative prediction of severe postoperative pain. Pain 105(3):415–423PubMedCrossRefGoogle Scholar
  5. 5.
    Hui YV, Abrishami A, Peng PWH, Wong JCF (2009) Predictors of postoperative pain and analgesic consumption a qualitative systematic review. Anesthesiology 111(3):657–677CrossRefGoogle Scholar
  6. 6.
    Arendt-Nielsen L, Yarnitsky D (2009) Experimental and clinical applications of quantitative sensory testing applied to skin, muscles and viscera. J Pain 10(6):556–572PubMedCrossRefGoogle Scholar
  7. 7.
    Brandsborg B, Dueholm M, Kehlet H, Jensen TS, Nikolajsen L (2011) Mechanosensitivity before and after hysterectomy: a prospective study on the prediction of acute and chronic postoperative pain. Br J Anaesth 107(6):940–947PubMedCrossRefGoogle Scholar
  8. 8.
    Rago R, Forfori F, Materazzi G, Abramo A, Collareta M, Miccoli P et al (2012) Evaluation of a preoperative pain score in response to pressure as a marker of postoperative pain and drugs consumption in surgical thyroidectomy. Clin J Pain 28(5):382–386PubMedCrossRefGoogle Scholar
  9. 9.
    Nielsen PR, Nørgaard L, Rasmussen LS, Kehlet H (2007) Prediction of post-operative pain by an electrical pain stimulus. Acta Anaesthesiol Scand 51(5):582–586PubMedCrossRefGoogle Scholar
  10. 10.
    Bisgaard T, Klarskov B, Rosenberg J, Kehlet H (2001) Characteristics and prediction of early pain after laparoscopic cholecystectomy. Pain 90(3):261–269PubMedCrossRefGoogle Scholar
  11. 11.
    Weissman-Fogel I, Granovsky Y, Crispel Y, Ben-Nun A, Best LA, Yarnitsky D et al (2009) Enhanced presurgical pain temporal summation response predicts post-thoracotomy pain intensity during the acute postoperative phase. J Pain 10(6):628–636PubMedCrossRefGoogle Scholar
  12. 12.
    Hsu Y, Somma J, Yang C, Tsai P-S, Yang C-H, Chen C–C (2005) Predicting postoperative pain by preoperative pressure pain assessment. Anesthesiology 103(3):613–618PubMedCrossRefGoogle Scholar
  13. 13.
    Pan PH, Coghill R, Houle TT, Seid MH, Lindel WM, Parker RL et al (2006) Multifactorial preoperative predictors for postcesarean section pain and analgesic requirement. Anesthesiology 104(3):417–425PubMedCrossRefGoogle Scholar
  14. 14.
    Martinez V, Fletcher D, Bouhassira D, Sessler DI, Chauvin M (2007) The evolution of primary hyperalgesia in orthopedic surgery: quantitative sensory testing and clinical evaluation before and after total knee arthroplasty. Anesth Analg 105(3):815–821PubMedCrossRefGoogle Scholar
  15. 15.
    Rudin a, Wölner-Hanssen P, Hellbom M, Werner MU (2008) Prediction of post-operative pain after a laparoscopic tubal ligation procedure. Acta Anaesthesiol Scand 52(7):938–945PubMedCrossRefGoogle Scholar
  16. 16.
    Strulov L, Zimmer EZ, Granot M, Tamir A, Jakobi P, Lowenstein L (2007) Pain catastrophizing, response to experimental heat stimuli, and post-cesarean section pain. J Pain 8(3):273–279PubMedCrossRefGoogle Scholar
  17. 17.
    Yarnitsky D, Crispel Y, Eisenberg E, Granovsky Y, Ben-Nun A, Sprecher E et al (2008) Prediction of chronic post-operative pain: pre-operative DNIC testing identifies patients at risk. Pain 138(1):22–28PubMedCrossRefGoogle Scholar
  18. 18.
    Granot M, Lowenstein L, Yarnitsky D, Tamir A, Zimmer EZ (2003) Postcesarean section pain prediction by preoperative experimental pain assessment. Anesthesiology 98(6):1422–1426PubMedCrossRefGoogle Scholar
  19. 19.
    Wilder-Smith CH, Hill L, Dyer R a, Torr G, Coetzee A (2003) Postoperative sensitization and pain after cesarean delivery and the effects of single IM Doses of tramadol and diclofenac alone and in combination. Anesth Analg 97(2):526–533PubMedCrossRefGoogle Scholar
  20. 20.
    Werner MU, Duun P, Kehlet H (2004) Prediction of postoperative pain by preoperative nociceptive responses to heat stimulation. Anesthesiology 100(1):115–119PubMedCrossRefGoogle Scholar
  21. 21.
    Buhagiar L, Cassar O a, Brincat MP, Buttigieg GG, Inglott AS, Adami MZ et al (2011) Predictors of post-caesarean section pain and analgesic consumption. J Anaesthesiol Clin Pharmacol 27(2):185–191PubMedCrossRefGoogle Scholar
  22. 22.
    Aasvang EK, Gmaehle E, Hansen J, Gmaehle B, Forman J, Schwarz J et al (2010) Predictive risk factors for persistent postherniotomy pain. Anesthesiology 112(4):957–969PubMedCrossRefGoogle Scholar
  23. 23.
    Aasvang EK, Hansen JB, Kehlet H (2008) Can preoperative electrical nociceptive stimulation predict acute pain after groin herniotomy? J Pain 9(10):940–944PubMedCrossRefGoogle Scholar
  24. 24.
    Wilder-Smith OHG, Tassonyi E, Crul BJP, Arendt-Nielsen L (2003) Quantitative sensory testing and human surgery. Anesthesiology 98(5):1214–1222PubMedCrossRefGoogle Scholar
  25. 25.
    Werner MU, Mjöbo HN, Nielsen PR, Rudin A (2010) Prediction of postoperative pain: a systematic review of predictive experimental pain studies. Anesthesiology 112(6):1494–1502PubMedCrossRefGoogle Scholar
  26. 26.
    Cervero F, Laird JM (1999) Visceral pain. Lancet 353(9170):2145–2148PubMedCrossRefGoogle Scholar
  27. 27.
    Giamberardino MA, de Bigottina P, Martegiani C, Vecchiet L (1994) Effects of extracorporeal shock wave lithotripsy on referred hyperalgesia from renal/ureteral calculosis. Pain 56:77–83PubMedCrossRefGoogle Scholar
  28. 28.
    Stawowy M, Drewes AM, Arendt-Nielsen L, Funch-Jensen P (2006) Somatosensory changes in the referred pain area before and after cholecystectomy in patients with uncomplicated gallstone disease. Scand J Gastroenterol 41(7):833–837PubMedCrossRefGoogle Scholar
  29. 29.
    Drewes AM, Gregersen HA-NL (2003) Experimental pain in gastroenterology. A reappraisal of human studies. Scand J Gastroenterol 38:1115–1130PubMedCrossRefGoogle Scholar
  30. 30.
    Pedersen KV, Liao D, Osther SS, Drewes AM, Gregersen H, Osther PJS (2012) Distension of the renal pelvis in kidney stone patients: sensory and biomechanical responses. Urol Res 40(4):305–316PubMedCrossRefGoogle Scholar
  31. 31.
    Silvasti M, Rosenberg P, Seppälä T, Svartling NPM (1998) Comparison of analgesic efficacy of oxycodone and morphine in postoperative intravenous patient-controlled analgesia. Acta Anaesthesiol Scand 42(5):576–580PubMedCrossRefGoogle Scholar
  32. 32.
    Giamberardino M (1999) Recent and forgotten aspects of visceral pain. Eur J Pain 3(2):77–92PubMedCrossRefGoogle Scholar
  33. 33.
    Frøkjaer JB, Andersen SD, Gale J, Arendt-Nielsen L, Gregersen H, Drewes AM (2005) An experimental study of viscero-visceral hyperalgesia using an ultrasound-based multimodal sensory testing approach. Pain 119(1–3):191–200PubMedCrossRefGoogle Scholar
  34. 34.
    Brock C, Andresen T, Frøkjaer J, Gale J, Olesen A, Arendt-Nielsen L et al (2010) Central pain mechanisms following combined acid and capsaicin perfusion of the human oesophagus. Eur J Pain 14(3):273–281PubMedCrossRefGoogle Scholar
  35. 35.
    Gracely RH (2006) Studies of pain in human subjects. In: McMahon SB, Koltzenburg M (eds) Wall and Melzack’s textbook of pain, 5th edn. Elsevier/Churchill Livingstone, Philadelphia, pp 267–268CrossRefGoogle Scholar
  36. 36.
    Staahl C, Olesen AE, Andresen T, Arendt-Nielsen L, Drewes AM (2009) Assessing analgesic actions of opioids by experimental pain models in healthy volunteers—an updated review. Br J Clin Pharmacol 68(2):149–168PubMedCrossRefGoogle Scholar
  37. 37.
    Soyupek S, Bozlu M, Armağan A, Ozorak A, Perk H (2007) Does experimental pain assessment before biopsy predict for pain during transrectal ultrasound-guided prostate biopsy? Urology 70(4):681–684PubMedCrossRefGoogle Scholar
  38. 38.
    Granot M (2009) Can we predict persistent postoperative pain by testing preoperative experimental pain? Curr Opin Anaesthesiol 22(3):425–430PubMedCrossRefGoogle Scholar
  39. 39.
    Olesen A, Andresen T, Staahl C, Drewes AM (2012) Human experimental pain models for assessing the therapeutic efficacy of analgesic drugs. Pharmacol Rev 64(3):722–779PubMedCrossRefGoogle Scholar
  40. 40.
    Andresen T, Pfeiffer-Jensen M, Brock C, Drewes A, Arendt-Nielsen L (2012) A human experimental bone pain model. Basic Clin Pharmacol ToxicolGoogle Scholar
  41. 41.
    Eisenberg E, Midbari A, Haddad M, Pud D (2010) Predicting the analgesic effect to oxycodone by “static” and “dynamic” quantitative sensory testing in healthy subjects. Pain 151(1):104–109PubMedCrossRefGoogle Scholar
  42. 42.
    Zwisler ST, Enggaard TP, Noehr-Jensen L, Mikkelsen S, Verstuyft C, Becquemont L et al (2010) The antinociceptive effect and adverse drug reactions of oxycodone in human experimental pain in relation to genetic variations in the OPRM1 and ABCB1 genes. Fundam Clin Pharmacol 24(4):517–524PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Katja Venborg Pedersen
    • 1
  • Anne Estrup Olesen
    • 2
  • Palle Jørn Sloth Osther
    • 1
  • Lars Arendt-Nielsen
    • 3
  • Asbjørn Mohr Drewes
    • 2
    • 3
  1. 1.Urological Research Center, Department of Urology, Hospital LittlebeltUniversity of Southern DenmarkFredericaDenmark
  2. 2.Mech-Sense, Department of Gastroenterology and HepatologyAalborg University HospitalAalborgDenmark
  3. 3.Center for Sensory-Motor Interactions (SMI), Department of Health Science and TechnologyAalborg UniversityAalborgDenmark

Personalised recommendations