Urological Research

, Volume 40, Issue 6, pp 623–637 | Cite as

Biomolecular mechanism of urinary stone formation involving osteopontin

  • Kenjiro Kohri
  • Takahiro Yasui
  • Atsushi Okada
  • Masahito Hirose
  • Shuzo Hamamoto
  • Yasuhiro Fujii
  • Kazuhiro Niimi
  • Kazumi  Taguchi
Invited Review

Abstract

Urinary stones consist of two phases—an inorganic (mineral) phase and an organic (matrix) phase. Studies on the organic components of kidney stones have been undertaken later than those on the inorganic components. After osteopontin was identified as one of the matrix components, the biomolecular mechanism of urinary stone formation became clearer. It also triggered the development of new preventive treatments. Osteopontin expression is sporadically observed in normal distal tubular cells and is markedly increased in stone-forming kidneys. Calcium oxalate crystals adhering to renal tubular cells are incorporated into cells by the involvement of osteopontin. Stimulation of crystal–cell adhesion impairs the opening of mitochondrial permeability transition pores (mPTP) in tubular cells and produces oxidative stress, apoptosis, and osteopontin expression. Macrophages phagocytose and digest a small amount of crystals, but many crystals aggregate into a mass containing osteopontin and epithelial cell debris and are excreted into the renal tubular lumen, becoming nuclei of urinary stones. This biomolecular mechanism is similar to atherosclerotic calcification. Based on these findings, new preventive treatments have been developed. Dietary control such as low-cholesterol intake and the ingestion of antioxidative foods and vegetables have successfully reduced the 5-year recurrence rate. Osteopontin antibodies and cyclosporine A, which blocks the opening of mPTP, have markedly inhibited the expression of osteopontin and urinary stone formation in animal models.

Keywords

Osteopontin Urinary stone Calcium oxalate Macrophage Atherosclerosis Mitochondria 

References

  1. 1.
    Desnos E (1972) The history of urology to the nineteenth century. In Murphy LJT The history of urology. Charles C Thomas, SpringfieldGoogle Scholar
  2. 2.
    Griffith DP (1978) Struvite stones. Kidney Int 13:372–382PubMedCrossRefGoogle Scholar
  3. 3.
    Chadwick MA, Mann WN (1950) The medical works of Hippocrates. Charles C. Thomas, SpringfieldGoogle Scholar
  4. 4.
    Lingeman JE, Smith LH, Woods JR, Newman DM (1989) Hippocrates to the modern era, Urinary calculi: ESWL endourology, and medical therapy. Lea & Febiger, PhiladelphiGoogle Scholar
  5. 5.
    Kohri K, Suzuki Y, Yoshida K, Yamamoto K, Amasaki N, Yamate T, Iguchi M, Shinohara H, Kurita T (1992) Molecular cloning and sequencing of cDNA encoding urinary stone protein, which is identical to osteopontin. Biochem Biophys Res Commun 184:859–864PubMedCrossRefGoogle Scholar
  6. 6.
    Boyce WH, Sulkin NM (1956) Biocolloids of urine in health and in calculous disease. III. The mucoprotein matrix of urinary calculi. J Clin Invest 35:1067PubMedCrossRefGoogle Scholar
  7. 7.
    Boyce WH, Garvey FK (1956) The amount and nature of the organic matrix in urinary calculi. Rev J Urol 76:213Google Scholar
  8. 8.
    Boyce WH (1968) Organic matrix of human urinary concretions. Am J Med 45:683CrossRefGoogle Scholar
  9. 9.
    Roberts SD, Resnick MI (1986) Glycosaminoglycans content of stone matrix. J Urol 135:1078–1083PubMedGoogle Scholar
  10. 10.
    Kohri K, Nomura S, Kitamura Y, Nagata T, Yoshioka K, Iguchi M, Yamate T, Umekawa T, Suzuki Y, Shinohara H, Kurita T (1993) Structure and expression of the mRNA encoding urinary stone protein (osteopontin). J Biol Chem 268:15180–15184PubMedGoogle Scholar
  11. 11.
    Fleming DE, van Riessen A, Chauvet MC, Grover PK, Hunter B, van Bronswijk W, Ryall RL (2003) Intracrystalline proteins and urolithiasis: a synchrotron X-ray diffraction study of calcium oxalate monohydrate. J Bone Miner Res 18:1282–1291PubMedCrossRefGoogle Scholar
  12. 12.
    Williams JC, Zarse CA, Jackson ME, Witsmann FA, McAteer JA (2006) Variability of protein content in calcium oxalate monohydrate (COM) stones. J Endourol 20:560–564PubMedCrossRefGoogle Scholar
  13. 13.
    McKee MD, Nanci A, Khan SR (1995) Ultrastructural immunodetection of osteopontin and osteocalcin as major matrix components of renal calculi. J Bone Miner Res 10:1913–1929PubMedCrossRefGoogle Scholar
  14. 14.
    Hirose M, Yasui T, Okada A, Hamamoto S, Shimizu H, Itoh Y, Tozawa K, Kohri K (2010) Renal tubular epithelial cell injury and oxidative stress induce calcium oxalate crystal formation in mouse kidney. Int J Urol 17:83–93PubMedCrossRefGoogle Scholar
  15. 15.
    Coe FL, Evan AP, Worcester EM, Lingeman JE (2010) Three pathways for human kidney stone formation. Urol Res 38:147–160PubMedCrossRefGoogle Scholar
  16. 16.
    Hirose M, Tozawa K, Okada A, Hamamoto S, Higashibata Y, Gao B, Hayashi Y, Shimizu H, Kubota Y, Yasui T, Kohri K. (2011) Role of osteopontin in early phase of renal crystal formation: immunohistochemical and microstructural comparisons with osteopontin knock-out mice. Urol Res (Epub ahead of print)Google Scholar
  17. 17.
    Tawada T, Fujita K, Sakakura T, Shibutani T, Nagata T, Iguchi M, Kohri K (1999) Distribution of osteopontin and calprotectin as matrix protein in calcium-containing stone. Urol Res 27:238–242PubMedCrossRefGoogle Scholar
  18. 18.
    Yamate T, Kohri K, Umekawa T, Iguchi M, Kurita T (1999) Interaction between osteopontin on Madin Darby canine kidney cell membrane and calcium oxalate crystal. Urol Int 62:81–86PubMedCrossRefGoogle Scholar
  19. 19.
    Yamate T, Kohri K, Umekawa T, Amasaki N, Ishikawa Y, Kurita T (1996) The effect of osteopontin on the adhesion of calcium oxalate crystals to Madin–Darby canine kidney cells. Eur Urol 30:388–393PubMedGoogle Scholar
  20. 20.
    Yamate T, Kohri K, Umekawa T, Iguchi M, Kurita K (1998) Osteopontin antisense oligonucleotide inhibits adhesion of calcium oxalate crystals in Madin–Darby canine kidney cell. J Urol 160:1506–1512PubMedCrossRefGoogle Scholar
  21. 21.
    Yasui T, Fujita K, Asai K, Kohri K (2002) Osteopontin regulates adhesion of calcium oxalate crystals to renal epithelial cells. Int J Urol 9:100–108PubMedCrossRefGoogle Scholar
  22. 22.
    Yasui T, Fujita K, Tozawa K, Asai K, Soji T, Kato T, Kohri K (2000) Calcium oxalate crystal attachment to cultured rat kidney epithelial cell, NRK-52E. Urol Int 67:73–76CrossRefGoogle Scholar
  23. 23.
    Iguchi M, Takamura C, Umekawa T, Kohri K, Kurita T (1999) Inhibitory effects of female sex hormones on urinary stone formation in rats. Kidney Int 56:479–485PubMedCrossRefGoogle Scholar
  24. 24.
    Yasui T, Fujita K, Sasaki S, Iguchi M, Hirota S, Nomura S, Azuma Y, Ohta T, Kohri K (1998) Alendronate inhibits osteopontin expression enhanced by parathyroid hormone-related peptide (PTHrP) in the rat kidney. Urol Res 26:355–360PubMedCrossRefGoogle Scholar
  25. 25.
    Liang CT, Barnes J (1995) Renal expression of osteopontin and alkaline phosphatase correlates with BUN levels in aged rats. Am J Physiol 269:F398–F404PubMedGoogle Scholar
  26. 26.
    Umekawa T, Kohri K, Kurita T (1995) Expression of osteopontin messenger RNA in the rat kidney on experimental model of renal stone. Biochem Mol Int 35:223–230Google Scholar
  27. 27.
    Asselman M, Verhulst A, De Broe ME, Verkoelen CF (2003) Calcium oxalate crystal adherence to hyaluronan-, osteopontin-, and CD44-expressing injured/regenerating tubular epithelial cells in rat kidneys. J Am Soc Nephrol 14:3155–3166PubMedCrossRefGoogle Scholar
  28. 28.
    Thamilselvan S, Byer KJ, Hackett RL, Khan SR (2000) Free radical scavengers, catalase and superoxide dismutase provide protection from oxalate-associated injury to LLC-PK1 and MDCK cells. J Urol 164:224–229PubMedCrossRefGoogle Scholar
  29. 29.
    Kojimoto Y, Kennington L, Scheid CR, Honeyman TW (1999) Role of phospholipase A2 in the cytotoxic effects of oxalate in cultured renal epithelial cells. Kidney Int 56:1432–1441CrossRefGoogle Scholar
  30. 30.
    Itoh Y, Yasui T, Okada A, Tozawa K, Hayashi Y, Kohri K (2005) Preventive effects of green tea on renal stone formation and the role of oxidative stress in nephrolithiasis. J Urol 173:271–275PubMedCrossRefGoogle Scholar
  31. 31.
    Itoh Y, Yasui T, Okada A, Tozawa K, Hayashi Y, Kohri K (2005) Examination of the anti-oxidative effect in renal tubular cells and apoptosis by oxidative stress. Urol Res 33:261–266PubMedCrossRefGoogle Scholar
  32. 32.
    Lee HJ, Jeong SJ, Lee HJ, Lee EO, Bae H, Lieske JC, Kim SH (2011) 1,2,3,4,6-Penta-O-galloyl-beta-d-glucose reduces renal crystallization and oxidative stress in a hyperoxaluric rat model. Kidney Int 79:538–545PubMedCrossRefGoogle Scholar
  33. 33.
    Khan SR (2004) Crystal-induced inflammation of the kidneys: results from human studies, animal models, and tissue-culture studies. Clin Exp Nephrol 8:75–88PubMedCrossRefGoogle Scholar
  34. 34.
    Umekawa T, Byer K, Uemura H, Khan SR (2005) Diphenileneiodium (DPI) reduces oxalate ion- and calcium oxalate monohydrate and brushite crystal-induced upregulation of MCP-1 in NRK 52E cells. Nephrol Dial Transplant 20:870–878PubMedCrossRefGoogle Scholar
  35. 35.
    Delvecchio FC, Brizuela RM, Khan SR, Byer K, Li Z, Zhong P, Preminger GM (2005) Citrate and vitamin E blunt the shock wave-induced free radical surge in an in vitro cell culture model. Urol Res 33:448–452PubMedCrossRefGoogle Scholar
  36. 36.
    Khan SR (2005) Hyperoxaluria-induced oxidative stress and antioxidants for renal protection. Urol Res 33:349–357PubMedCrossRefGoogle Scholar
  37. 37.
    Umekawa T, Hatanaka Y, Kurita T, Khan SR (2004) Effect of angiotensin II receptor blockage on osteopontin expression and calcium oxalate crystal deposition in rat kidneys. J Am Soc Nephrol 15:635–644PubMedCrossRefGoogle Scholar
  38. 38.
    Niimi K, Yasui T, Hirose M, Hamamoto S, Itoh Y, Okada A, Kubota Y, Kojima Y, Tozawa K, Sasaki S, Hayashi Y, Kohri K (2012) Mitochondrial permeability transition pore (mPTP) opening induces the initial process of renal calcium crystallization. Free Radical Bio Med 52:1207–1217CrossRefGoogle Scholar
  39. 39.
    Kohri K, Fujita K, Itoh T, Sakakura T, Umekawa T, Kurita T (1996) Purification and characterization of urinary stone protein. Akt Urol 27:27–29CrossRefGoogle Scholar
  40. 40.
    Kido J, Nishikawa H, Ishida H, Yamashita K, Kitamura S, Kohri K, Nagata T (1997) Identification of calprotectin, a calcium binding leukocyte protein, in human dental calculus matrix. J Periodont Res 32:355–361PubMedCrossRefGoogle Scholar
  41. 41.
    Verhulst A, Asselman M, Persy VP, Schepers MS, Helbert MF, Verkoelen CF, De Broe ME (2003) Crystal retention capacity of cells in the human nephron: involvement of CD44 and its ligands hyaluronic acid and osteopontin in the transition of a crystal binding- into a nonadherent epithelium. J Am Soc Nephrol 14:107–115PubMedCrossRefGoogle Scholar
  42. 42.
    Oldberg A, Franzén A, Heinegård D (1986) Cloning and sequence analysis of rat bone sialoprotein (osteopontin) cDNA reveals an Arg-Gly-Asp cell binding sequence. Proc Natl Acad Sci USA 83:8819–8823PubMedCrossRefGoogle Scholar
  43. 43.
    Ashkar S, Weber GF, Panoutsakopoulou V, Sanchirico ME, Jansson M, Zawaideh S, Rittling SR, Denhardt DT, Glimcher MJ, Cantor H (2000) Eta-1(osteopontin): an early component of type-1(cell-mediated) immunity. Science 287:860–864PubMedCrossRefGoogle Scholar
  44. 44.
    Pepinsky RB, Mumford RA, Chen LL, Leone D, Amo SE, Riper GV, Whitty A, Dolinski B, Lobb RR, Dean DC, Chang LL, Raab CE, Si Q, Hagmann WK, Lingham RB (2004) Comparative assessment of the ligand and metal ion binding properties of integrins alpha9beta1 and alpha4beta1. Biochemistry 41:7125–7141CrossRefGoogle Scholar
  45. 45.
    Kohri K, Kodama M, Ishikawa Y, Katayama K, Takada M, Katoh Y, Kurita T, Iguchi M (1990) Inhibitory effect of glutamic acid and aspartic acid on calcium oxalate crystal formation. Eur Urol 17:173–177PubMedGoogle Scholar
  46. 46.
    Denhardt DT, Guo X (1993) Osteopontin: a protein with diverse functions. FASEB J 7:1475–1482PubMedGoogle Scholar
  47. 47.
    Hamamoto S, Nomura S, Yasui T, Okada A, Hirose M, Shimizu H, Itoh Y, Tozawa K, Kohri K (2010) Effects of impaired functional domains of osteopontin on renal crystal formation: analyses of OPN transgenic and OPN knockout mice. J Bone Miner Res 25:2712–2723PubMedGoogle Scholar
  48. 48.
    Okada A, Nomura S, Saeki Y, Higashibata Y, Hamamoto S, Hirose M, Itoh Y, Yasui T, Tozawa K, Kohri K (2008) Morphological conversion of calcium oxalate crystals into stones is regulated by osteopontin in mouse kidney. J Bone Miner Res 23:1629–1637PubMedCrossRefGoogle Scholar
  49. 49.
    Hamamoto S, Yasui T, Okada A, Hirose M, Matsui Y, Kon S, Sakai F, Kojima Y, Hayashi Y, Tozawa K, Uede T, Kohri K (2011) Crucial role of the cryptic epitope SLAYGLR within osteopontin in renal crystal formation of mice. J Bone Miner Res 26:2967–2977PubMedCrossRefGoogle Scholar
  50. 50.
    Chien YC, Masica DL, Gray JJ, Nguyen S, Vali H, McKee MD (2009) Modulation of calcium oxalate dihydrate growth by selective crystal-face binding of phosphorylated osteopontin and polyaspartate peptide showing occlusion by sectoral (compositional) zoning. J Biol Chem 284:23491–23501PubMedCrossRefGoogle Scholar
  51. 51.
    Thurgood LA, Cook AF, Sørensen ES, Ryall RL (2010) Face-specific incorporation of osteopontin into urinary and inorganic calcium oxalate monohydrate and dehydrate crystals. Urol Res 38:357–376PubMedCrossRefGoogle Scholar
  52. 52.
    Ljunghall S (1979) Family history of renal stones in a population study of stone-formers and health subjects. Br J Urol 51:249–252PubMedCrossRefGoogle Scholar
  53. 53.
    Yasui T, Iguchi M, Suzuki S, Kohri K (2008) Prevalence and epidemiological characteristics of urolithiasis in Japan; national trends between 1965 and 2005. Urology 71:209–213PubMedCrossRefGoogle Scholar
  54. 54.
    Yasui T, Iguchi M, Suzuki S, Okada A, Itoh Y, Tozawa K, Kohri K (2008) Prevalence and epidemiologic characteristics of lower urinary tract stones in Japan. Urology 72:1001–1005PubMedCrossRefGoogle Scholar
  55. 55.
    Yamate T, Tsuji H, Amasaki N, Iguchi M, Kurita T, Kohri K (1999) Analysis of osteopontin DNA in the urine of healthy and stone-forming men. Urol Res 27:225–230CrossRefGoogle Scholar
  56. 56.
    Gao B, Yasui T, Okada A, Tozawa K, Hayashi Y, Kohri K (2005) A polymorphism of the osteopontin gene is related to urinary calcium stones. J Urol 174:1472–1476PubMedCrossRefGoogle Scholar
  57. 57.
    Gao B, Yasui T, Itoh Y, Li Z, Okada A, Tozawa K, Hayashi Y, Kohri K (2007) Association of osteopontin gene haplotypes with nephrolithiasis. Kidney Int 72:592–598PubMedCrossRefGoogle Scholar
  58. 58.
    Liu CC, Huang SP, Tsai LY, Wu WJ, Juo SH, Chou YH, Huang CH, Wu MT (2010) The impact of osteopontin promoter polymorphisms on the risk of calcium urolithiasis. Clin Chim Acta 411:739–743PubMedCrossRefGoogle Scholar
  59. 59.
    Gögebakan B, Igci YZ, Arslan A, Igci M, Erturhan S, Oztuzcu S, Sen H, Demiryürek S, Arikoglu H, Cengiz B, Bayraktar R, Yurtseven C, Sarıca K, Demiryürek AT (2010) Association between the T-593A and C6982T polymorphisms of the osteopontin gene and risk of developing nephrolithiasis. Arch Med Res 41:442–448PubMedCrossRefGoogle Scholar
  60. 60.
    Nagata T, Todescan R, Goldberg HA, Zhang Q, Sodek J (1989) Sulphation of secreted phosphoprotein 1(SPP1, osteopontin) is associated with mineralized tissue formation. Biochem Biophys Res Commun 165:234–240PubMedCrossRefGoogle Scholar
  61. 61.
    Giachelli CM, Pichler R, Lombardi D, Denhardt DT, Alpers CE, Schwartz SM, Johnson RJ (1994) Osteopontin expression in angiotensin II-induced tubulointerstitial nephritis. Kidney Int 45:515–524PubMedCrossRefGoogle Scholar
  62. 62.
    Kleinman JG, Worcester EM, Beshensky AM, Sheridan AM, Bonventre JV, Brown D (1995) Upregulation of osteopontin expression by ischemia in rat kidney. Ann NY Acad Sci. 760:321–323PubMedCrossRefGoogle Scholar
  63. 63.
    Kido J, Kasahara C, Ohishi K, Nishikawa S, Ishida H, Yamashita K, Kitamura S, Kohri K, Nagata T (1995) Identification of osteopontin in human dental calculus matrix. Archs Oral Biol 40:967–972CrossRefGoogle Scholar
  64. 64.
    Hirota S, Ito A, Nagoshi J, Takeda M, Kurata A, Takatsuka Y, Kohri K, Nomura S, Kitamura Y (1995) Expression of bone matrix protein messenger ribonucleic acids in human breast cancers, Possible involvement of osteopontin in development of calcifying foci. Lab Invest 72:64–69PubMedGoogle Scholar
  65. 65.
    Hirota S, Asada H, Kohri K, Tsukamoto Y, Ito A, Yoshikawa K, Xu Z, Nomura S, Kitamura Y (1995) Possible role of osteopontin in deposition of calcium phosphate in human pilomatricomas. J Invest Dermatol 105:138–142PubMedCrossRefGoogle Scholar
  66. 66.
    Hirota S, Nakajima Y, Yoshimine T, Kohri K, Nomura S, Taneda M, Hayakawa T, Kitamura Y (1995) Expression of bone-related protein messenger RNA in human meningiomas : possible involvement of osteopontin in development of psammoma bodies. J Neuropathol Exp Neurol 54:698–703PubMedCrossRefGoogle Scholar
  67. 67.
    Hirota S, Imakita M, Kohri K, Ito A, Morii E, Adachi S, Kim HM, Kitamura Y, Yutani C, Nomura S (1993) Expression of osteopontin messenger RNA by macrophages in atherosclerotic plaques-A possible association with calcification. Am J Pathol 134:1003–1008Google Scholar
  68. 68.
    Zeyda M, Gollinger K, Todoric J, Kiefer FW, Keck M, Aszmann O, Prager G, Zlabinger GJ, Petzelbauer P, Stulnig TM (2011) Osteopontin is an activator of human adipose tissue macrophages and directly affects adipocyte function. Endocrinology 152:2219–2227PubMedCrossRefGoogle Scholar
  69. 69.
    Yu PJ, Skolnick A, Ferrari G, Heretis K, Mignatti P, Pintucci G, Rosenzweig B, Diaz-Cartelle J, Kronzon I, Perk G, Pass HI, Galloway AC, Grossi EA, Grau JB (2009) Correlation between plasma osteopontin levels and aortic valve calcification: potential insights into the pathogenesis of aortic valve calcification and stenosis. J Thorac Cardiovasc Surg 138:196–199PubMedCrossRefGoogle Scholar
  70. 70.
    Cho HJ, Cho HJ, Kim HS (2009) Osteopontin: a multifunctional protein at the crossroads of inflammation, atherosclerosis, and vascular calcification. Curr Atheroscler Rep 11:206–213PubMedCrossRefGoogle Scholar
  71. 71.
    Higasibata Y, Sakuma T, Kawahata H, Fujihara S, Moriyama K, Okada A, Yasui T, Kohri K, Kitamura Y, Nomura S (2004) Identification of promoter regions involved in cell- and developmental stage-specific osteopontin expression in bone, kidney, placenta, and mammary gland: an analysis of transgenic mice. J Bone Miner Res 19:78–88CrossRefGoogle Scholar
  72. 72.
    Scatena M, Liaw L, Giachelli CM (2007) Osteopontin a multifunctional molecule regulating chronic inflammation and vascular disease. Arterioscler Thromb Vasc Biol 27:2302–2309PubMedCrossRefGoogle Scholar
  73. 73.
    Nordin BE, Need AG, Morris HA, Horowitz M, Robertson WG (1991) Evidence for a renal calcium leak in postmenopausal women. J Clin Endocrinol Metab 72:401–407PubMedCrossRefGoogle Scholar
  74. 74.
    Heller HJ, Sakhaee K, Moe OW, Pak CY (2002) Etiological role of estrogen status in renal stone formation. J Urol 168:1923–1927PubMedCrossRefGoogle Scholar
  75. 75.
    Johnson RC, Leopold JA, Loscalzo J (2006) Vascular calcification : pathobiological mechanisms and clinical implications. Circ Res 99:1044–1059PubMedCrossRefGoogle Scholar
  76. 76.
    Osako MK, Nakagami H, Koibuchi N, Shimizu H, Nakagami F, Koriyama H, Shimamura M, Miyake T, Rakugi H, Morishita R (2010) Estrogen inhibits vascular calcification via vascular RANKL system: common mechanism of osteoporosis and vascular calcification. Circ Res 107:466–475PubMedCrossRefGoogle Scholar
  77. 77.
    Itoh Y, Yoshimura M, Niimi K, Usami M, Hamamoto S, Kobayashi T, Hirose M, Okada A, Yasui T, Tozawa K, Kohri K (2011) The role of long-term loading of cholesterol in renal crystal formation. Arch Ital Urol Androl 83:23–25PubMedGoogle Scholar
  78. 78.
    Buck AC, Davies RL, Harrison T (1991) The protective role of eicosapentaenoic acid in the pathogenesis of nephrolithiasis. J Urol 146:188–194PubMedGoogle Scholar
  79. 79.
    Yasui T, Suzuki S, Itoh Y, Tozawa K, Tokudome S, Kohri K (2008) Eicosapentaenoic acid has a preventive effect on the recurrence of nephrolithiasis. Urol Int 81:135–138PubMedCrossRefGoogle Scholar
  80. 80.
    Yasui T, Ito Y, Okada A, Hirose M, Tozawa K, Kohri K (2005) Eicosapentaenoic acid (EPA) medically prevents the recurrence of urinary calculus. Urol Res 33:150–151Google Scholar
  81. 81.
    Schmiedl A, Schwille PO, Bonucci E, Erben RG, Grayczyk A, Sharma V (2000) Nephrocalcinosis and hyperlipidemia in rats fed a cholesterol- and fat-rich diet: association with hyperoxaluria, altered kidney and bone minerals, and renal tissue phospholipid-calcium interaction. Urol Res 28:404–415PubMedCrossRefGoogle Scholar
  82. 82.
    Khan SR, Glenton PA, Backov G, Talham DR (2002) Presence of lipids in urine, crystals and stones: implications for the formation of kidney stones. Kidney Int 62:2062–2072PubMedCrossRefGoogle Scholar
  83. 83.
    Taylor EN, Stampfer MJ, Curhan GC (2005) Obesity, weight gain, and the risk of kidney stones. JAMA 293:455–462PubMedCrossRefGoogle Scholar
  84. 84.
    Taylor EN, Stampfer MJ, Curhan GC (2005) Diabetes mellitus and the risk of nephrolithiasis. Kidney Int 68:1230–1235PubMedCrossRefGoogle Scholar
  85. 85.
    Yasui T, Itoh Y, Bing G, Okada A, Tozawa K, Kohri K (2007) Aortic calcification in urolithiasis patients. Scand J Urol Nephrol 41:419–421PubMedCrossRefGoogle Scholar
  86. 86.
    Matsuda M, Shimomura I, Sata M, Arita Y, Nishida M, Maeda N, Kumada M, Okamoto Y, Nagaretani H, Nishizawa H, Kihshida K, Komuro R, Ouchi N, Kihara S, Nagai R, Funahashi T, Matsuzawa Y (2002) Role of adiponectin in preventing vascular stenosis. The missing link of adipo-vascular axis. J Biol Chem 277:37487–37491PubMedCrossRefGoogle Scholar
  87. 87.
    Kadowaki T, Yamauchi T (2005) Adiponectin and adiponectin receptors. Endocr Rev 26:439–451PubMedCrossRefGoogle Scholar
  88. 88.
    Fujii Y, Okada A, Yasui T, Niimi K, Hamamoto S, Hirose M, Kubota Y, Kojima Y, Tozawa K, Hayashi Y, Kohri K. (2012) Adiponectin ameliorates kidney stone formation in metabolic syndrome model mice by inhibition of inflammation and apoptosis (submitted)Google Scholar
  89. 89.
    Ando R, Suzuki S, Nagaya T, Yamada T, Okada A, Yasui T, Tozawa K, Tokudome S, Kohri K (2011) Impact of insulin resistance, insulin and adiponectin on kidney stones in the Japanese population. Int J Urol 18:131–138PubMedCrossRefGoogle Scholar
  90. 90.
    Ito T, Kohri K (1996) Significance of macrophage and cytokines in expression of stone matrix. Jpn J Urol 87:865–874Google Scholar
  91. 91.
    Iguchi M, Ishikawa Y, Katayama K, Kodama M, Takada M, Katoh Y, Kataoka K, Kohri K, Kurita T, Umekawa T (1990) Dietary intake and habits of Japanese renal patients. J Urol 143:1093–1095PubMedGoogle Scholar
  92. 92.
    Iguchi M, Katayama K, Takada M, Katoh Y, Kataoka K, Kohri K, Kurita T (1990) Clinical effects of prophylactic dietary treatment on renal stones. J Urol 144:229–232PubMedGoogle Scholar
  93. 93.
    Caudarella R, Vescini F, Buffa A, La Manna G, Stefoni S (2004) Osteoporosis and urolithiasis. Urol Int 72:17–19PubMedCrossRefGoogle Scholar
  94. 94.
    Kohri K, Ishikawa Y, Katayama Y, Takada M, Katoh Y, Kataoka K, Iguchi M, Kurita T (1991) Relationship between metabolic acidosis and calcium phosphate stone formation in women. Int Urol Nephrol 23:307–316PubMedCrossRefGoogle Scholar
  95. 95.
    Jaeger P, Lippuner K, Casez JP, Hess B, Ackerman D, Hug C (1994) Low bone mass in idiopathic renal stone formers: magnitude and significance. J Bone Miner Res 9:1525–1532PubMedCrossRefGoogle Scholar
  96. 96.
    Tugcu V, Ozbek E, Aras B, Ozbay B, Islim F, Tasci AI (2007) Bone mineral density measurement in patients with recurrent normocalciuric calcium stone disease. Urol Res 35:29–34PubMedCrossRefGoogle Scholar
  97. 97.
    Senzaki H, Yasui T, Okada A, Ito Y, Tozawa K, Kohri K (2004) Alendronate inhibits urinary calcium microlith formation in a three-dimensional culture model. Urol Res 32:223–228PubMedCrossRefGoogle Scholar
  98. 98.
    Yasui T, Itoh Y, Okada A, Hamamoto S, Hirose M, Kobayashi T, Tozawa K, Kohri K (2009) Alendronate reduces the excretion of risk factors for calcium phosphate stone formation in postmenopausal women with osteoporosis. Urol Int 83:226–229PubMedCrossRefGoogle Scholar
  99. 99.
    Liberman UA, Weiss SR, Bröll J, Minne HW, Quan H, Bell NH, Rodriguez-Portales J, Downs RW, Dequeker J, Favus M (1995) Effect of oral alendronate on bone mineral density and the incidence of fractures in postmenopausal osteoporosis. N Engl J Med 333:1437–1443PubMedCrossRefGoogle Scholar
  100. 100.
    LeBlanc A, Schneider V, Shackelford L, West S, Oganov V, Bakulin A, Voronin L (2000) Bone mineral and lean tissue loss after long duration space flight. J Musculoskelet Neuronal Interact 1:157–160PubMedGoogle Scholar
  101. 101.
    Smith SM, Heer M (2002) Calcium and bone metabolism during space flight. Nutrition 18:849–852PubMedCrossRefGoogle Scholar
  102. 102.
    Watanabe Y, Ohshima H, Mizuno K, Sekiguchi C, Fukunaga M, Kohri K, Rittweger J, Felsenberg D, Matsumoto T, Nakamura T (2004) Intravenous pamidronate prevents femoral bone loss and renal stone formation during 90-day bed rest. J Bone Miner Res 19:1771–1778PubMedCrossRefGoogle Scholar
  103. 103.
    Okada A, Oshima H, Itoh Y, Yasui T, Tozawa K, Kohri K (2008) Risk of renal stone formation induced by long-term bed rest could be decreased by premedication with bisphosphonate and increased by resistive exercise. Int J Urol 15:630–635PubMedCrossRefGoogle Scholar
  104. 104.
    Koul HK, Koul S, Fu S, Santosham V, Seikhon A, Menon M (1999) Oxalate: from crystal formation to crystal retention. J Am Soc Nephrol 14:417–421Google Scholar
  105. 105.
    Wüthrich Rudolf P (1998) The complex role of osteopontin in renal disease. Nephrol Dial Transplant 13:2448–2450PubMedCrossRefGoogle Scholar
  106. 106.
    Huang HS, Ma MC, Chen CF, Chen J (2003) Lipid peroxidation and its correlations with urinary levels of oxalate, citric acid, and osteopontin in patients with renal calcium oxalate stones. Urology 62:1123–1128PubMedCrossRefGoogle Scholar
  107. 107.
    Khan SR, Johnson JM, Peck AB, Cornelius JG, Glenton PA (2002) Expression of osteopontin in rat kidneys: induction during ethylene glycol induced calcium oxalate nephrolithiasis. J Urol 168:1173–1181PubMedCrossRefGoogle Scholar
  108. 108.
    Kohri K, Takada M, Imanishi M, Katoh Y, Kataoka K, Kurita T, Iguchi M (1991) Immunofluorescent study on the interaction between collagen and calcium oxalate crystals in renal tubules. Eur Urol 19:249–252PubMedGoogle Scholar
  109. 109.
    Azzopardi PV, O’Young J, Lajoie G, Karttunen M, Goldberg HA, Hunter GK (2010) Roles of electrostatics and conformation in protein-crystal interactions. PLoS One 19:e9330CrossRefGoogle Scholar
  110. 110.
    Taller A, Grohe B, Rogers KA, Goldberg HA, Hunter GK (2007) Specific adsorption of osteopontin and synthetic polypeptides to calcium oxalate monohydrate crystals. Biophys J 93:1768–1777PubMedCrossRefGoogle Scholar
  111. 111.
    Kumar V, Peňa de la Vega L, Farell G, Lieske JC (2005) Urinary macromolecular inhibition of crystal adhesion to renal epithelial cells is impaired in male stone formers. Kidney Int 68:1784–1792PubMedCrossRefGoogle Scholar
  112. 112.
    Hirose M, Tozawa K, Okada A, Hamamoto S, Shimizu H, Kubota Y, Itoh Y, Yasui T, Kohri K (2008) Glyoxylate induces renal tubular cell injury and microstructural changes in experimental mouse. Urol Res 36:139–147PubMedCrossRefGoogle Scholar
  113. 113.
    Okada A, Yasui T, Hamamoto S, Hirose M, Kubota Y, Itoh Y, Tozawa K, Hayashi Y, Kohri K (2009) Genome-wide analysis of genes related to kidney stone formation and elimination in the calcium oxalate nephrolithiasis model mouse: detection of stone-preventive factors and involvement of macrophage activity. J Bone Miner Res 24:908–924PubMedCrossRefGoogle Scholar
  114. 114.
    Okada A, Yasui T, Fujii Y, Niimi K, Hamamoto S, Hirose M, Kojima Y, Itoh Y, Tozawa K, Hayashi Y, Kohri K (2010) Renal macrophage migration and crystal phagocytosis via inflammatory-related gene expression during kidney stone formation and elimination in mice: detection by association analysis of stone-related gene expression and microstructural observation. J Bone Miner Res 25:2701–2711PubMedCrossRefGoogle Scholar
  115. 115.
    Okada A, Nomura S, Higashibata Y, Hirose M, Gao B, Yoshimura M, Itoh Y, Yasui T, Tozawa K, Kohri K (2007) Successful formation of calcium oxalate crystal deposition in mouse kidney by intraabdominal glyoxylate injection. Urol Res 35:89–99PubMedCrossRefGoogle Scholar
  116. 116.
    Shiraga H, Min W, VanDusen WJ, Clayman MD, Miner D, Terrell CH, Sherbotie JR, Foreman JW, Przysiecki C, Neilson EG et al (1992) Inhibition of calcium oxalate crystal growth in vitro by uropontin: another member of the aspartic acid-rich protein superfamily. Proc Natl Acad Sci USA 89:426–430PubMedCrossRefGoogle Scholar
  117. 117.
    Wesson JA, Johnson RJ, Mazzali M, Beshensky AM, Stietz S, Giachelli C, Liaw L, Alpers CE, Couser WG, Kleinman JG, Hughes J (2003) Osteopontin is a critical inhibitor of calcium oxalate crystal formation and retention in renal tubules. J Am Soc Nephrol 14:139–147PubMedCrossRefGoogle Scholar
  118. 118.
    Taguchi K, Okada A, Yasui T, Kobayashi T, Ando R, Tozawa K, Kohri K. (2012) Pioglitazone, a peroxisome proliferator activated receptor γ agonist, decreases renal crystal deposition, oxidative stress and inflammation in hyperoxaluric rats. J Urol 188:1002–1011Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Kenjiro Kohri
    • 1
  • Takahiro Yasui
    • 1
  • Atsushi Okada
    • 1
  • Masahito Hirose
    • 1
  • Shuzo Hamamoto
    • 1
  • Yasuhiro Fujii
    • 1
  • Kazuhiro Niimi
    • 1
  • Kazumi  Taguchi
    • 1
  1. 1.Department of Nephro-urologyNagoya City University Graduate School of Medical SciencesNagoyaJapan

Personalised recommendations