Urological Research

, Volume 39, Issue 4, pp 269–282 | Cite as

Calcium oxalate monohydrate aggregation induced by aggregation of desialylated Tamm-Horsfall protein

  • Pragasam Viswanathan
  • Jeffrey D. Rimer
  • Ann M. Kolbach
  • Michael D. WardEmail author
  • Jack G. Kleinman
  • Jeffrey A. WessonEmail author
Original Paper


Tamm-Horsfall protein (THP) is thought to protect against calcium oxalate monohydrate (COM) stone formation by inhibiting COM aggregation. Several studies reported that stone formers produce THP with reduced levels of glycosylation, particularly sialic acid levels, which leads to reduced negative charge. In this study, normal THP was treated with neuraminidase to remove sialic acid residues, confirmed by an isoelectric point shift to higher pH. COM aggregation assays revealed that desialylated THP (ds-THP) promoted COM aggregation, while normal THP inhibited aggregation. The appearance of protein aggregates in solutions at ds-THP concentrations ≥1 μg/mL in 150 mM NaCl correlated with COM aggregation promotion, implying that ds-THP aggregation induced COM aggregation. The aggregation-promoting effect of the ds-THP was independent of pH above its isoelectric point, but was substantially reduced at low ionic strength, where protein aggregation was much reduced. COM aggregation promotion was maximized at a ds-THP to COM mass ratio of ~0.025, which can be explained by a model wherein partial COM surface coverage by ds-THP aggregates promotes crystal aggregation by bridging opposing COM surfaces, whereas higher surface coverage leads to repulsion between adsorbed ds-THP aggregates. Thus, desialylation of THP apparently abrogates a normal defensive action of THP by inducing protein aggregation, and subsequently COM aggregation, a condition that favors kidney stone formation.


Sialic acid THP Crystal aggregation Protein aggregation Calcium oxalate Kidney stone 



The authors thank Dr. Brian K. Olmsted for helpful discussions and Dr. William J. Zachowicz for performing the electrophoretic mobility (zeta potential) measurements reported in this study. This study was supported by the Veterans Affairs Merit Review Program (9305), the National Institutes of Health (NIDDK R01-DK068551), the Jacob Lemann Jr. Endowment Grant from the Medical College of Wisconsin, and the NYU Molecular Design Institute.

Supplementary material

240_2010_353_MOESM1_ESM.doc (674 kb)
Supplementary material (DOC 674 kb)


  1. 1.
    Bayer ME (1964) An electron microscope examination of urinary mucoprotein and its interaction with influenza virus. J Cell Biol 21:265–274PubMedCrossRefGoogle Scholar
  2. 2.
    Benkovic J, Furedi-Milhofer H, Hlady V, Cvoriscec D, Stavljenic-Rukavina A (1995) Effect of Tamm-Horsfall protein on calcium oxalate precipitation. Eur J Clin Chem Clin Biochem 33:705–710PubMedGoogle Scholar
  3. 3.
    Bichler K, Mittermuller B, Strohmaier WL, Feil G, Eipper E (1999) Excretion of Tamm-Horsfall protein in patients with uric acid stones. Urol Int 62:87–92PubMedCrossRefGoogle Scholar
  4. 4.
    Boeve ER, Cao LC, de Bruijn WC, Robertson WG, Romijn JC, Schroder FH (1994) Zeta potential distribution on calcium oxalate crystal and Tamm-Horsfall protein surface analyzed with Doppler electrophoretic light scattering. J Urol 152:531–536PubMedGoogle Scholar
  5. 5.
    Boyce WH, King JS Jr (1963) Present concepts concerning the origin of matrix and stones. Ann NY Acad Sci 104:563–578PubMedCrossRefGoogle Scholar
  6. 6.
    Boyce WH, Swanson M (1955) Biocolloids of urine in health and in calculous disease. II. Electrophoretic and biochemical studies of a mucoprotein insoluble in molar sodium chloride. J Clin Invest 34:1581–1589PubMedCrossRefGoogle Scholar
  7. 7.
    Canales BK, Anderson L, Higgins L, Slaton J, Roberts KP, Liu N, Monga M (2008) Second prize: comprehensive proteomic analysis of human calcium oxalate monohydrate kidney stone matrix. J Endourol 22:1161–1167PubMedCrossRefGoogle Scholar
  8. 8.
    Cao LC, Deng G, Boeve ER, de Bruijn WC, de WR, Verkoelen CF, Romijn JC, Schroder FH (1996) Zeta potential measurement and particle size analysis for a better understanding of urinary inhibitors of calcium oxalate crystallization. Scanning Microsc 10:401–411Google Scholar
  9. 9.
    Cavallone D, Malagolini N, Serafini-Cessi F (2001) Mechanism of release of urinary Tamm-Horsfall glycoprotein from the kidney GPI-anchored counterpart. Biochem Biophys Res Commun 280:110–114PubMedCrossRefGoogle Scholar
  10. 10.
    Clyne DH, Kant KS, Pesce AJ, Pollak VE (1979) Nephrotoxicity of low molecular weight serum proteins: physicochemical interactions between myoglobin, hemoglobin, Bence-Jones proteins and Tamm-Horsfall mucoprotein. Curr Probl Clin Biochem 9:299–308Google Scholar
  11. 11.
    Clyne DH, Pesce AJ, Thompson RE (1979) Nephrotoxicity of Bence Jones proteins in the rat: importance of protein isoelectric point. Kidney Int 16:345–352PubMedCrossRefGoogle Scholar
  12. 12.
    De Yoreo JJ, Qiu SR, Hoyer JR (2006) Molecular modulation of calcium oxalate crystallization. Am J Physiol Renal Physiol 291:F1123–F1131PubMedCrossRefGoogle Scholar
  13. 13.
    Finlayson B (1978) Physicochemical aspects of urolithiasis. Kidney Int 13:344–360PubMedCrossRefGoogle Scholar
  14. 14.
    Ganter K, Bongartz D, Hesse A (1999) Tamm-Horsfall protein excretion and its relation to citrate in urine of stone-forming patients. Urology 53:492–495PubMedCrossRefGoogle Scholar
  15. 15.
    Gokhale JA, Glenton PA, Khan SR (1997) Biochemical and quantitative analysis of Tamm-Horsfall protein in rats. Urol Res 25:347–354PubMedCrossRefGoogle Scholar
  16. 16.
    Grover PK, Resnick MI (1995) Evidence for the presence of abnormal proteins in the urine of recurrent stone formers. J Urol 153:1716–1721PubMedCrossRefGoogle Scholar
  17. 17.
    Hallson PC, Choong SK, Kasidas GP, Samuell CT (1997) Effects of Tamm-Horsfall protein with normal and reduced sialic acid content upon the crystallization of calcium phosphate and calcium oxalate in human urine. Br J Urol 80:533–538PubMedGoogle Scholar
  18. 18.
    Hallson PC, Rose GA (1979) Uromucoids and urinary stone formation. Lancet 1:1000–1002PubMedCrossRefGoogle Scholar
  19. 19.
    Hess B, Nakagawa Y, Coe FL (1989) Inhibition of calcium oxalate monohydrate crystal aggregation by urine proteins. Am J Physiol 257:F99–F106PubMedGoogle Scholar
  20. 20.
    Hess B, Nakagawa Y, Parks JH, Coe FL (1991) Molecular abnormality of Tamm-Horsfall glycoprotein in calcium oxalate nephrolithiasis. Am J Physiol 260:F569–F578PubMedGoogle Scholar
  21. 21.
    Hession C, Decker JM, Sherblom AP, Kumar S, Yue CC, Mattaliano RJ, Tizard R, Kawashima E, Schmeissner U, Heletky S (1987) Uromodulin (Tamm-Horsfall glycoprotein): a renal ligand for lymphokines. Science 237:1479–1484PubMedCrossRefGoogle Scholar
  22. 22.
    Hoyer JR, Seiler MW (1979) Pathophysiology of Tamm-Horsfall protein. Kidney Int 16:279–289PubMedCrossRefGoogle Scholar
  23. 23.
    Huang ZQ, Sanders PW (1995) Biochemical interaction between Tamm-Horsfall glycoprotein and Ig light chains in the pathogenesis of cast nephropathy. Lab Invest 73:810–817PubMedGoogle Scholar
  24. 24.
    Jaggi M, Nakagawa Y, Zipperle L, Hess B (2007) Tamm-Horsfall protein in recurrent calcium kidney stone formers with positive family history: abnormalities in urinary excretion, molecular structure and function. Urol Res 35:55–62PubMedCrossRefGoogle Scholar
  25. 25.
    Jovine L, Qi H, Williams Z, Litscher E, Wassarman PM (2002) The ZP domain is a conserved module for polymerization of extracellular proteins. Nat Cell Biol 4:457–461PubMedCrossRefGoogle Scholar
  26. 26.
    Knorle R, Schnierle P, Koch A, Buchholz NP, Hering F, Seiler H, Ackermann T, Rutishauser G (1994) Tamm-Horsfall glycoprotein: role in inhibition and promotion of renal calcium oxalate stone formation studied with Fourier-transform infrared spectroscopy. Clin Chem 40:1739–1743PubMedGoogle Scholar
  27. 27.
    Kobayashi K, Fukuoka S (2001) Conditions for solubilization of Tamm-Horsfall protein/uromodulin in human urine and establishment of a sensitive and accurate enzyme-linked immunosorbent assay (ELISA) method. Arch Biochem Biophys 388:113–120PubMedCrossRefGoogle Scholar
  28. 28.
    Konya E, Amasaki N, Umekawa T, Iguchi M, Kurita T (2002) Influence of urinary sialic acid on calcium oxalate crystal formation. Urol Int 68:281–285PubMedCrossRefGoogle Scholar
  29. 29.
    Lieske JC, Toback FG, Deganello S (2001) Sialic acid-containing glycoproteins on renal cells determine nucleation of calcium oxalate dihydrate crystals. Kidney Int 60:1784–1791PubMedCrossRefGoogle Scholar
  30. 30.
    Malek RS, Boyce WH (1973) Intranephronic calculosis: its significance and relationship to matrix in nephrolithiasis. J Urol 109:551–555PubMedGoogle Scholar
  31. 31.
    McQueen EG (1966) Composition of urinary casts. Lancet 1:397–398PubMedCrossRefGoogle Scholar
  32. 32.
    McQueen EG, Engel GB (1966) Factors determining the aggregation of urinary mucoprotein. J Clin Pathol 19:392–396PubMedCrossRefGoogle Scholar
  33. 33.
    Melick RA, Quelch KJ, Rhodes M (1980) The demonstration of sialic acid in kidney stone matrix. Clin Sci (Lond) 59:401–404Google Scholar
  34. 34.
    Merchant ML, Cummins TD, Wilkey DW, Salyer SA, Powell DW, Klein JB, Lederer ED (2008) Proteomic analysis of renal calculi indicates an important role for inflammatory processes in calcium stone formation. Am J Physiol Renal Physiol 295:F1254–F1258PubMedCrossRefGoogle Scholar
  35. 35.
    Mo L, Liaw L, Evan AP, Sommer AJ, Lieske JC, Wu XR (2007) Renal calcinosis and stone formation in mice lacking osteopontin, Tamm-Horsfall protein, or both. Am J Physiol Renal Physiol 293:F1935–F1943PubMedCrossRefGoogle Scholar
  36. 36.
    Nakagawa Y, Abram V, Parks JH, Lau HS, Kawooya JK, Coe FL (1985) Urine glycoprotein crystal growth inhibitors. Evidence for a molecular abnormality in calcium oxalate nephrolithiasis. J Clin Invest 76:1455–1462PubMedCrossRefGoogle Scholar
  37. 37.
    Pennica D, Kohr WJ, Kuang WJ, Glaister D, Aggarwal BB, Chen EY, Goeddel DV (1987) Identification of human uromodulin as the Tamm-Horsfall urinary glycoprotein. Science 236:83–88PubMedCrossRefGoogle Scholar
  38. 38.
    Porter KR, Tamm I (1955) Direct visualization of a mucoprotein component of urine. J Biol Chem 212:135–140PubMedGoogle Scholar
  39. 39.
    Prado MJ, Nicastri AL, Costa PL, Rockman T, Tersariol IL, Nader HB, Barros RT, Prado EB (1997) The renal and hepatic distribution of Bence Jones proteins depends on glycosylation: a scintigraphic study in rats. Braz J Med Biol Res 30:865–872PubMedCrossRefGoogle Scholar
  40. 40.
    Pragasam V, Kalaiselvi P, Subashini B, Sumitra K, Varalakshmi P (2005) Structural and functional modification of THP on nitration: comparison with stone formers THP. Nephron Physiol 99:28–34CrossRefGoogle Scholar
  41. 41.
    Qiu SR, Wierzbicki A, Orme CA, Cody AM, Hoyer JR, Nancollas GH, Zepeda S, De Yoreo JJ (2004) Molecular modulation of calcium oxalate crystallization by osteopontin and citrate. Proc Natl Acad Sci USA 101:1811–1815PubMedCrossRefGoogle Scholar
  42. 42.
    Reinhart HH, Obedeanu N, Walz D, Sobel JD (1989) A new ELISA method for the rapid quantification of Tamm-Horsfall protein in urine. Am J Clin Pathol 92:199–205PubMedGoogle Scholar
  43. 43.
    Robertson WG, Peacock M (1972) Calcium oxalate crystalluria and inhibitors of crystallization in recurrent renal stone-formers. Clin Sci 43:499–506PubMedGoogle Scholar
  44. 44.
    Romero MC, Nocera S, Nesse AB (1997) Decreased Tamm-Horsfall protein in lithiasic patients. Clin Biochem 30:63–67PubMedCrossRefGoogle Scholar
  45. 45.
    Ronco P, Brunisholz M, Geniteau-Legendre M, Chatelet F, Verroust P, Richet G (1987) Physiopathologic aspects of Tamm-Horsfall protein: a phylogenetically conserved marker of the thick ascending limb of Henle’s loop. Adv Nephrol Necker Hosp 16:231–249PubMedGoogle Scholar
  46. 46.
    Rose GA, Sulaiman S (1982) Tamm-Horsfall mucoproteins promote calcium oxalate crystal formation in urine: quantitative studies. J Urol 127:177–179PubMedGoogle Scholar
  47. 47.
    Rose MB (1975) Renal stone formation. The inhibitory effect of urine on calcium oxalate precipitation. Invest Urol 12:428–433PubMedGoogle Scholar
  48. 48.
    Schnierle P (1995) A simple diagnostic method for the differentiation of Tamm-Horsfall glycoproteins from healthy probands and those from recurrent calcium oxalate renal stone formers. Experientia 51:1068–1072PubMedCrossRefGoogle Scholar
  49. 49.
    Schnierle P, Hering F, Seiler H (1996) Isoelectric focusing of Tamm-Horsfall glycoproteins: a simple tool for recognizing recurrent calcium oxalate renal stone formers. Urol Res 24:79–82PubMedCrossRefGoogle Scholar
  50. 50.
    Scurr DS, Robertson WG (1986) Modifiers of calcium oxalate crystallization found in urine. III. Studies on the role of Tamm-Horsfall mucoprotein and of ionic strength. J Urol 136:505–507PubMedGoogle Scholar
  51. 51.
    Serafini-Cessi F, Bellabarba G, Malagolini N, Dall’Olio F (1989) Rapid isolation of Tamm-Horsfall glycoprotein (uromodulin) from human urine. J Immunol Methods 120:185–189PubMedCrossRefGoogle Scholar
  52. 52.
    Serafini-Cessi F, Monti A, Cavallone D (2005) N-Glycans carried by Tamm-Horsfall glycoprotein have a crucial role in the defense against urinary tract diseases. Glycoconj J 22:383–394PubMedCrossRefGoogle Scholar
  53. 53.
    Sheng X, Jung T, Wesson JA, Ward MD (2005) Adhesion at calcium oxalate crystal surfaces and the effect of urinary constituents. Proc Natl Acad Sci USA 102:267–272PubMedCrossRefGoogle Scholar
  54. 54.
    Sheng X, Ward MD, Wesson JA (2005) Crystal surface adhesion explains the pathological activity of calcium oxalate hydrates in kidney stone formation. J Am Soc Nephrol 16:1904–1908PubMedCrossRefGoogle Scholar
  55. 55.
    Stevenson FK, Cleave AJ, Kent PW (1971) The effect of ions on the viscometric and ultracentrifugal behaviour of Tamm-Horsfall glycoprotein. Biochim Biophys Acta 236:59–66PubMedGoogle Scholar
  56. 56.
    Sumitra K, Pragasam V, Sakthivel R, Kalaiselvi P, Varalakshmi P (2005) Beneficial effect of vitamin E supplementation on the biochemical and kinetic properties of Tamm-Horsfall glycoprotein in hypertensive and hyperoxaluric patients. Nephrol Dial Transplant 20:1407–1415PubMedCrossRefGoogle Scholar
  57. 57.
    Trewick AL, Rumsby G (1999) Isoelectric focusing of native urinary uromodulin (Tamm-Horsfall protein) shows no physicochemical differences between stone formers and non-stone formers. Urol Res 27:250–254PubMedCrossRefGoogle Scholar
  58. 58.
    UniProt (2008) The universal protein resource (UniProt). Nucleic Acids Res 36:D190–D195CrossRefGoogle Scholar
  59. 59.
    van Aswegen CH, van der Merwe CA, du Plessis DJ (1990) Sialic acid concentrations in the urine of men with and without renal stones. Urol Res 18:29–33PubMedCrossRefGoogle Scholar
  60. 60.
    van Rooijen JJ, Voskamp AF, Kamerling JP, Vliegenthart JF (1999) Glycosylation sites and site-specific glycosylation in human Tamm-Horsfall glycoprotein. Glycobiology 9:21–30PubMedCrossRefGoogle Scholar
  61. 61.
    Verkoelen CF, Van Der Boom BG, Kok DJ, Romijn JC (2000) Sialic acid and crystal binding. Kidney Int 57:1072–1082PubMedCrossRefGoogle Scholar
  62. 62.
    Webber D, Radcliffe CM, Royle L, Tobiasen G, Merry AH, Rodgers AL, Sturrock ED, Wormald MR, Harvey DJ, Dwek RA, Rudd PM (2006) Sialylation of urinary prothrombin fragment 1 is implicated as a contributory factor in the risk of calcium oxalate kidney stone formation. FEBS J 273:3024–3037PubMedCrossRefGoogle Scholar
  63. 63.
    Wesson JA, Ganne V, Beshensky AM, Kleinman JG (2005) Regulation by macromolecules of calcium oxalate crystal aggregation in stone formers. Urol Res 33:206–212PubMedCrossRefGoogle Scholar
  64. 64.
    Wesson JA, Ward MD (2007) Pathological Biomineralization of Kidney Stones. Elements 3:415–421CrossRefGoogle Scholar
  65. 65.
    Wiggins RC (1987) Uromucoid (Tamm-Horsfall glycoprotein) forms different polymeric arrangements on a filter surface under different physicochemical conditions. Clin Chim Acta 162:329–340PubMedCrossRefGoogle Scholar
  66. 66.
    Williams J, Marshall RD, van HH, Vliegenthart JF (1984) Structural analysis of the carbohydrate moieties of human Tamm-Horsfall glycoprotein. Carbohydr Res 134:141–155Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Pragasam Viswanathan
    • 1
    • 3
  • Jeffrey D. Rimer
    • 2
    • 4
  • Ann M. Kolbach
    • 1
  • Michael D. Ward
    • 2
    Email author
  • Jack G. Kleinman
    • 1
  • Jeffrey A. Wesson
    • 1
    Email author
  1. 1.The Nephrology Division of the Medical College of WisconsinDepartment of Veterans Affairs Medical CenterMilwaukeeUSA
  2. 2.Department of Chemistry, Molecular Design InstituteNew York UniversityNew YorkUSA
  3. 3.Renal Research Lab, SBST, Center for Biomedical ResearchVIT UniversityVelloreIndia
  4. 4.Department of Chemical and Biomolecular EngineeringUniversity of HoustonHoustonUSA

Personalised recommendations