Advertisement

Urological Research

, Volume 39, Issue 4, pp 259–267 | Cite as

Investigation of the microstructure and mineralogical composition of urinary calculi fragments by synchrotron radiation X-ray microtomography: a feasibility study

  • Jozef KaiserEmail author
  • Markéta Holá
  • Michaela Galiová
  • Karel Novotný
  • Viktor Kanický
  • Petr Martinec
  • Jiří Ščučka
  • Francesco Brun
  • Nicola Sodini
  • Giuliana Tromba
  • Lucia Mancini
  • Tamara Kořistková
Original Paper

Abstract

The outcomes from the feasibility study on utilization of synchrotron radiation X-ray microtomography (SR-μCT) to investigate the texture and the quantitative mineralogical composition of selected calcium oxalate-based urinary calculi fragments are presented. The comparison of the results obtained by SR-μCT analysis with those derived from current standard analytical approaches is provided. SR-μCT is proved as a potential effective technique for determination of texture, 3D microstructure, and composition of kidney stones.

Keywords

Computed microtomography Synchrotron radiation Urinary calculi Texture Microstructure 

Notes

Acknowledgments

We acknowledge the Ministry of Education, Youth and Sports of the Czech Republic for bestowing the research project OC09013 and MSM0021622412 and the support by the European Community—Research Infrastructure Action under the FP6 “Structuring the European Research Area” Programme (through the Integrated Infrastructure Initiative “Integrating Activity on Synchrotron and Free Electron Laser Science”). We acknowledge Czech Science Foundation for bestowing the grant project 203/09/1394. J. K. acknowledges Central European Initiative (CEI) for CERES fellowship. Special thanks to Kateřina Proksová and Hana Nováková for their help with SR-μCT measurements and data processing, and to Jaromír Leichmann for help with mineralogical documentation.

References

  1. 1.
    Pramanik R, Asplin JR, Jackson ME, Williams JC Jr (2008) Protein content of human apatite and brushite kidney stones: significant correlation with morphologic measures. Urol Res 36:251–288PubMedCrossRefGoogle Scholar
  2. 2.
    Herring LC (1962) Observations on the analysis of ten thousand urinary calculi. J Urol 88:45–562Google Scholar
  3. 3.
    Mandel NS, Mandel GS (1989) Urinary tract stone disease in the United States veteran population. Geographical analysis of variations in composition. J Urol 142:1516–1521PubMedGoogle Scholar
  4. 4.
    Bon D, Dore B, Irani J, Marroncle M, Aubert J (1996) Radiographic prognostic criteria for extracorporeal shock-wave lithotripsy: a study of 485 patients. Urology 48:556–560PubMedCrossRefGoogle Scholar
  5. 5.
    Williams CJ Jr, Sav KC, Paterson RF, Hatt EK, McAtter JA, Lingeman JE (2003) Variability of renal stone fragility in shock wave lithotripsy. Urology 61:1092–1096PubMedCrossRefGoogle Scholar
  6. 6.
    Taton G, Rokita E, Wróbel A, Beckmann F, Thor P, Worek M (2009) Analysis of renal calculi structure with the use of X-ray microtomography. In: Dössel O, Schlegel WC (eds) IFMBE Proceedings 25/IV, Springer, Berlin, pp 382–385Google Scholar
  7. 7.
    Chaudhri MA, Watling J, Khan FA (2007) Spatial distribution of major and trace elements in bladder and kidney stones. J Radioanal Nucl Chem 271:713–720CrossRefGoogle Scholar
  8. 8.
    Cifuentes Delatte L (1977) Study of calculi structure using thin mineralogical section. J Urol Nephrol 83(2):592–596Google Scholar
  9. 9.
    Daudon M, Bazin D, André G, Jungers P, Cousson A, Chevallier P, Véron E, Matzen G (2009) Examination of whewellite kidney stones by scanning electron microscopy and powder neutron diffraction techniques. Appl Cryst 42:109–115CrossRefGoogle Scholar
  10. 10.
    Daudon M, Jungers P, Bazin D (2008) Peculiar morphology of stones in primary hyperoxaluria. New Engl J Med 359:100–102PubMedCrossRefGoogle Scholar
  11. 11.
    Zvara VL, Revúsová V (1988) Močové konkrementy (Urinary calculi). Veda SAV, BratislavaGoogle Scholar
  12. 12.
    Kageyama S, Kuwahara M, Kurosu S, Orikasa S (1986) Computer tomography and urinary calculi. 2. Determination of the composition of calculi by the CT value. Nippon Hinyokika Gakkai Zasshi 77:289–294PubMedGoogle Scholar
  13. 13.
    Kageyama S, Kuwahara M, Kurosu S, Orikasa S (1984) Computer tomography and urinary calculi. 1. Clinical evaluation of intrarenal microlith. Nippon Hinyokika Gakkai Zasshi 75:619–623PubMedGoogle Scholar
  14. 14.
    Williams CJ Jr, Zarse CA, Jakckson ME, Witzmann FA, McAteer JA (2006) Variability of proteine contenting calcium oxalate monohydrate stones. J Endourol 20:560PubMedCrossRefGoogle Scholar
  15. 15.
    Becker-Gaab C, Perouansky M, Zrenner M, zur Nieden J (1986) Sonographic diagnosis of kidney calculi-comparative study of ultrasound, excretory urography and computer tomography in 310 patients. Digitale Bilddiagn 6:128–134PubMedGoogle Scholar
  16. 16.
    Gaucher O, Hubert J, Blum A, Regent D, Mangin P (1998) Evaluation of spiral computed tomography in the demonstration of kidney stones. Ex vivo study. Prog Urol 8:347–351PubMedGoogle Scholar
  17. 17.
    Navarro Sánchez-Ortiz A, Fernández Mena FJ, Zuluaga Gómez A, Aguilar Ruiz J (1989) Densitometric study of staghorn lithiasis using computerized tomography. Arch Esp Urol 42:539–544PubMedGoogle Scholar
  18. 18.
    Davidson MT, Batchelar DL, Velupillai S, Denstedt JD, Cunningham IA (2005) Laboratory coherent-scatter analysis of intact urinary stones with crystalline composition: a tomographic approach. Phys Med Biol 50:3907–3925PubMedCrossRefGoogle Scholar
  19. 19.
    Grosjean R, Sauer B, Guerra RM et al (2008) Characterization of human renal stones with MDCT: advantage of dual energy and limitations due to respiratory motion. AJR Am J Roentgenol 190:720–728PubMedCrossRefGoogle Scholar
  20. 20.
    Boll DT, Patil NA, Paulson EK et al (2009) Renal stone assessment with dual-energy multidetector CT and advanced postprocessing techniques: improved characterization of renal stone composition pilot study. Radiology 250:813–820PubMedCrossRefGoogle Scholar
  21. 21.
    Lam HS, Lingeman JE, Russo R, Chua GT (1992) Stone surface area determination techniques: a unifying concept of staghorn stone burden assessment. J Urol 148:1026–1029PubMedGoogle Scholar
  22. 22.
    Komlev VS, Mastrogiacomo M, Peyrin F, Cancedda R, Rustichelli F (2009) X-ray synchrotron radiation pseudo-holotomography as a new imaging technique to investigate angio- and microvasculogenesis with no usage of contrast agents. Tissue Eng Part C Methods 15:425–430PubMedCrossRefGoogle Scholar
  23. 23.
    Galiová M, Kaiser J, Novotný K, Samek O, Reale L, Malina R, Páleníková K, Liška M, Čudek V, Kanický V, Otruba V, Poma A, Tucci A (2007) Utilization of laser induced breakdown spectroscopy for investigation of the metal accumulation in vegetal tissues. Spectrochim Acta B 62:1597–1605CrossRefGoogle Scholar
  24. 24.
    Kaiser J, Samek O, Reale L, Liška M, Malina R, Ritucci A, Poma A, Tucci A, Flora F, Lai A, Mancini L, Tromba G, Zanini F, Faenov A, Pikuz T, Cinque G (2007) Monitoring of the heavy-metal hyperaccumulation in vegetal tissues by X-ray radiography and by femto-second laser induced breakdown spectroscopy. Microsc Res Tech 70:147–153PubMedCrossRefGoogle Scholar
  25. 25.
    Farrell AP, Hodaly AH, Wang S (2000) Metal analysis of scales taken from arctic grayling. Arch Environ Toxicol 39:515–522CrossRefGoogle Scholar
  26. 26.
    Flem B, Moen V, Grimstvedt A (2005) Trace element analysis of scales from four populations of Norwegian Atlantic Salmon (Salmo salar l.) for stock identification using laser ablation inductively coupled plasma mass spectrometry. Appl Spectrosc 59:245–251PubMedCrossRefGoogle Scholar
  27. 27.
    Kaiser J, Holá M, Novotný K, Hahn D, Diwakar P, Malina R, Galiová M, Kanický V, Liška M (2009) LIBS and LA-ICP-MS Complementary Study of Uroliths. In: Proceedings of 2nd North American Symposium on Laser-Induced Breakdown Spectroscopy (NASLIBS 2009), 13–15 July 2009 New Orleans, LA., USA, Mississippi State University, p 102Google Scholar
  28. 28.
    Cloetens P, Barrett R, Baruchel J, Guigay JP, Schlenker M (1996) Phase objects in synchrotron radiation hard X-ray imaging. J Phys D Appl Phys 29:133–146CrossRefGoogle Scholar
  29. 29.
    Baruchel J, Buffière JY, Maire E, Merle P, Peix G (2000) X-ray tomography in material science, general principles. Hermes Science Publications, ParisGoogle Scholar
  30. 30.
    Zarse ChA, McArteer JA, Sommer AJ, Kin SC, Hatt EK, Lingeman JE, Evan AP, Williams JC Jr (2004) Non-destructive analysis of urinary calculi using micro computed tomography. BMC Urology 4. doi: 10.1186/1471-2490-4-15
  31. 31.
    Martinec P, Buryška J (2010) Database of the clinical and pacient′s data about urinary concrements “Urolithiasis OKB MNOF 1978–2010”. Institute of Geonics Academy of Sciences Ostrava and Municipal Hospital Ostrava—Fifejdy, Dep. Clinical Biochemistry. Czech Science Foundation, Grant project reg. no. 203/09/1394Google Scholar
  32. 32.
    Cloetens P, Pateyron-Salome M, Buffière JY et al (1997) Observation of microstructure and damage in materials by phase sensitive radiography and tomography. J Appl Phys 81:5878–5886CrossRefGoogle Scholar
  33. 33.
    Kak AC, Slaney M (1988) Principles of computerized tomographic imaging. IEEE Press, New YorkGoogle Scholar
  34. 34.
    Montanari F, Mancini L, Dreossi D (2003) SYRMEP_Tomo_Project tutorial: Internet Report, Sincrotrone. Trieste, Italy. http://www.ts.infn.it/physics/experiments/syrma/SYRMEP/Tutorial_tomo_program.ppt
  35. 35.
    Abramoff MD, Magelhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophotonics Int 11:36–42Google Scholar
  36. 36.
    Gerward L, Guilbert N, Jensen KB, Levring H (2001) X-ray absorption in matter. Reengineering XCOM. Radiat Phys chem 60:23–24CrossRefGoogle Scholar
  37. 37.
    Gerward L, Guilbert N, Jensen KB, Levring H (2004) WinXCom–a program for calculating X-ray attenuation coefficients. Radiat Phys chem 71:653–654CrossRefGoogle Scholar
  38. 38.
    Berger MJ, Hubell JH, Seltzer SM, Chang J, Coursey JS, Sukumar R, Zucker DS, Olsen K (2010) XCOM: Photon Cross Sections Database, Version 1.5. National Institute of Standards and Technology, Gaithersburg, MD. Avaiable at http://physics.nist.gov/xcom. (Originally published as Berger MJ, Hubbell JH (1987) XCOM: Photon Cross Sections on a Personal Computer. National Bureau of Standards (former name of NIST), NBSIR, 87–3597, Gaithersburg, MD)
  39. 39.
    Mancini L, Reiner E, Cloentens P et al (1998) Investigation of structural defects and inhomogeneitites in Al-Pd-Mn icosahedral quasicrystals by combined synchrotron X-ray topography and phase radiography. Philos Mag A 78:1175–1194CrossRefGoogle Scholar
  40. 40.
    Brun F, Mancini L, Kasae P, Favretto S, Dreossi D, Tromba G (2010) Pore3D: a software library for quantitative analysis of porous media. Nucl Instrum Methods 615:326–332Google Scholar
  41. 41.
    Hartigan JA (1975) Clustering algorithms. Wiley, New YorkGoogle Scholar
  42. 42.
    Schubert G, Brien G, Lenk S, Koch R (1983) Texture examinations on grain and thin section preparations of calcium oxalate calculi and their relations to pathogenetic parameters. Urol Res 11:111–115PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Jozef Kaiser
    • 1
    • 4
    Email author
  • Markéta Holá
    • 2
  • Michaela Galiová
    • 1
    • 2
  • Karel Novotný
    • 2
  • Viktor Kanický
    • 2
  • Petr Martinec
    • 3
  • Jiří Ščučka
    • 3
  • Francesco Brun
    • 4
  • Nicola Sodini
    • 4
  • Giuliana Tromba
    • 4
  • Lucia Mancini
    • 4
  • Tamara Kořistková
    • 5
  1. 1.Institute of Physical Engineering, Faculty of Mechanical EngineeringBrno University of TechnologyBrnoCzech Republic
  2. 2.Department of Chemistry, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  3. 3.Institute of GeonicsAcademy of SciencesOstrava-PorubaCzech Republic
  4. 4.Sincrotrone Trieste S.C.p.A.TriesteItaly
  5. 5.Laboratory Specializing in Urinary Stones AnalysesBrnoCzech Republic

Personalised recommendations