Advertisement

Urological Research

, Volume 32, Issue 3, pp 229–235 | Cite as

Infrequent alteration of the DPC4 tumor suppressor gene in renal cell carcinoma

  • Marijana Popović HadžijaEmail author
  • Reno Hrašćan
  • Maja Herak Bosnar
  • Žarko Zeljko
  • Mirko Hadžija
  • Josip Čadež
  • Krešimir Pavelić
  • Sanja Kapitanović
Original Paper

Abstract

The aim of this study was to investigate the alterations in the DPC4 tumor suppressor gene in renal cell carcinoma (RCC). The study included 32 tumor specimens from Croatian patients with a diagnosis of RCC. Loss of heterozygosity (LOH) was investigated using three specific oligonucleotide primers for the three DPC4 polymorphic markers. Our investigation of mutations in the DPC4 gene was focused on exons 2, 8, 10 and 11. These exons belong to the mad homology domains 1 (exon 2) and 2 (exons 8–11). The presence of previously documented mutation in exons 2 (codon 100), 8 (codon 358), 10 (codon 412), and 11 (codon 493) was investigated by restriction fragment length polymorphism (RFLP) analysis, as a first screening method. Finally, the study was extended to search for any other type of mutation in the four selected exons by single strand conformation polymorphism (SSCP) assay. To increase heterozygosity, all 32 tumor specimens were tested with primers for three polymorphic markers. A total of 30 (94%) were heterozygous (informative). LOH at any of these markers was only revealed in four (13%) of the 30 informative samples. No tumor samples were positive for mutation in the four investigated exons analyzed by RFLP. In addition, no samples showed other types of mutation in denaturing conditions. Genetic alterations were shown only in a minority of patients, probably because mutation analysis of the DPC4 gene has only been partially covered by our work. It seems that exon 2 (belonging to the MH1 domain) and exons 8, 10, 11 (belonging to the MH2 domain) are not altered in RCC. This investigation must be extended on other exons of DPC4 for a better understanding a role of this gene in renal cell carcinoma.

Keywords

Tumor suppressor gene DPC4 Renal cell carcinoma Loss of heterozygosity 

Notes

Acknowledgments

The Croatian Ministry for Sciences and Technology supported this project with grants 0098098 and 0098108. The authors thank Iva Pešun, Marijana Baričević and Marina Marš for excellent technical assistance.

References

  1. 1.
    Pantuck AJ, Zisman A, Belldegrun AS (2001) The changing natural history of renal cell carcinoma. J Urol 166: 1611CrossRefPubMedGoogle Scholar
  2. 2.
    Latif F, Tory K, Gnarra J, Yao M, Duh FM, Orcutt ML, Stackhouse T, Kuzmin I, Modi W, Geil G, Schmidt L, Zhou FW, Li H, Wei Mh, Chen F, Glenn G, Choyke P, Walther MM, Weng YK, Duan DSR, Dean M, Glavac D, Richards FM, Crossey PA, Ferguson-Smith MA, Lepaslier D, Chumakov I, Cohen D, Chinault AC, Maher ER, Linehan WM, Zbar B, Lerman MI (1993) Identification of the von Hippel-Lindau disease tumor suppressor gene. Science 260: 1317PubMedGoogle Scholar
  3. 3.
    Gnarra JR, Tory K, Weng Y, Schmidt L, Wei MH, Li H, Latif F, Liu S, Chen F, Duh FM, Lubensky I, Duan DR, Florence C, Pozzatti R, Walther MM, Bander NH, Grossman HB, Brauch H, Pomer S, Brooks JD, Isaacs WB, Lerman MI, Zbar B, Linehan WM (1994) Mutations of the VHL tumor suppressor gene in renal carcinoma. Nat Genet 7: 85PubMedGoogle Scholar
  4. 4.
    Brauch H, Weirich G, Brieger J, Glavac D, Rodl H, Eichinger M, Feurer M, Weidt E, Puranakanitstha C, Neuhaus C, Pomer S, Brenner W, Schirmacher P, Storkel S, Rotter M, Masera A, Gugeler N, Decker HJ (2000) VHL alterations in human clear cell renal cell carcinoma: association with advanced tumor stage and a novel hot spot mutation. Cancer Res 60: 1942PubMedGoogle Scholar
  5. 5.
    Herman JG, Latif F, Weng Y, Lerman MI, Zbar B, Liu S, Samid D, Duan DS, Gnarra JR, Linehan WM, Baylin SB(1994) Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci U S A 91: 9700PubMedGoogle Scholar
  6. 6.
    Ohta M, Inoue H, Cotticelli MG, Kastury K, Baffa R, Palazzo J, Siprashvili Z, Mori M, McCue P, Druck T, CM Croce, Huebner K(1996) The FHIT gene, spanning the chromosome 3p14.2 fragile site and renal carcinoma-associated t(3;8) breakpoint, is abnormal in digestive tract cancers. Cell 84: 587PubMedGoogle Scholar
  7. 7.
    Takahashi M, Kahnoski R, Gross D, Nicol D, Teh BT (2002) Familial adult renal neoplasia. J Med Genet 39: 1CrossRefPubMedGoogle Scholar
  8. 8.
    Jiang F, Desper R, Papadimitriou CH, Schaffer AA, Kallioniemi OP, Richter J, Schraml P, Sauter G, Mihatsch MJ, Moch H (2000) Construction of evolutionary three models for renal cell carcinoma from comparative genomic hybridization data. Cancer Res 60: 6503PubMedGoogle Scholar
  9. 9.
    Morita R, Ishikawa J, Tsutsumi M, Hikiji K, Tsukada Y, Kamidono S, Maeda S, Nakamura Y (1991) Allelotype of renal cell carcinoma. Cancer Res 51: 820PubMedGoogle Scholar
  10. 10.
    Moch H, Sauter G, Gasser TC, Buchholz N, Bubendorf L, Richter J, Jiang F, Dellas A, Mihatsch MJ (1997) p53 protein expression but not mdm-2 protein expression is associated with rapid tumor cell proliferation and prognosis in renal cell carcinoma. Urol Res 25 [Suppl 1]: S25Google Scholar
  11. 11.
    Angelo LS, Talpaz M, Kurzrock R (2002) Autocrine interleukin-6 production in renal cell carcinoma: evidence for the involvement of p53. Cancer Res 62: 932PubMedGoogle Scholar
  12. 12.
    Yamaguchi S, Yashihiro S, Matsuyama H, Nagao K, Fukunaga K, Matsumoto H, Matsuda K, Oba K, Naito K (2003) The allelic loss of chromosome 3p25 with c-myc gain is related to the development of clear-cell renal cell carcinoma. Clin Genet 63: 184PubMedGoogle Scholar
  13. 13.
    Latif Z, Watters AD, Bartlett JMS, Underwood MA, Aitchison M (2001) Gene amplification and overexpression of HER2 in renal cell carcinoma. BJU Int 88: 1Google Scholar
  14. 14.
    Kawada Y, Nakamura M, Ishida E, Shimada K, Oosterwijk E, Uemura H, Hirao Y, Chul KS, Konishi N (2001) Aberrations of the p14ARF and p16INK4a genes in renal cell carcinomas Jpn J Cancer Res 92: 1293Google Scholar
  15. 15.
    Saxen L (1987) Organogenesis of the kidney. Cambridge University Press, CambridgeGoogle Scholar
  16. 16.
    Hahn SA, Hoque ATMS, Moskaluk CA, DaCosta LT, Schutte M, Rozenblum E, Seymour A, Weinstein CL, Yeo CJ, Hruban RH, Kern SE (1996) Homozygous deletion map at 18q21 in pancreatic cancer. Cancer Res 56: 490PubMedGoogle Scholar
  17. 17.
    Schutte M (1999) DPC4/SMAD4 gene alterations in human cancer, and their functional implications. Ann Oncol 10 [Suppl 4]: S56Google Scholar
  18. 18.
    Liu F, Puponnot C, Massague J (1997) Dual role of the Smad4/DPC4 tumor suppressor in TGFB-inducible transcriptional complexes. Genes Dev 11: 3157Google Scholar
  19. 19.
    Sobin LH, Wittekind C (eds) (1997) International Union against Cancer TNM classification of malignant tumors, 5th edn. Wiley Liss, New YorkGoogle Scholar
  20. 20.
    Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  21. 21.
    Cardillo MR, Lazzereschi D, Gandini O, Di Silverio F, Colletta G. (2001) Transforming growth factor-beta pathway in human renal cell carcinoma and surrounding normal-appearing renal parenchyma. Anal Quant Cytol Histol 23: 109PubMedGoogle Scholar
  22. 22.
    Liu F (2001) SMAD4/DPC4 and pancreatic cancer survival. Clin Cancer Res 7: 3853PubMedGoogle Scholar
  23. 23.
    Li JH, Zhu HJ, Huang RX, Lai NK, Johnson JR, Lan YH (2002) Smad7 inhibits fibrotic effect of TGF-B on renal tubular epithelial cells by blocking Smad2 activation. J Am Soc Nephrol 13: 1464Google Scholar
  24. 24.
    Kinzler KW, Vogelstein B (1996) Lessons hereditary colorectal cancer. Cell 87: 159PubMedGoogle Scholar
  25. 25.
    Mao L, Lee DJ, Tockman MS, Erozan YS, Askin F, Sidransky D (1994) Microsatellite alterations as clonal markers for the detection of human cancer. Proc Natl Acad Sci U S A 91: 9871PubMedGoogle Scholar
  26. 26.
    Luttges J, Galehdari H, Brocker V, Schwarte-Waldhoff I, Henne-Bruns D, Kloppel G, Schmiegel W, Hahn AS (2001) Allelic loss is often the first hit in the biallelic inactivation of the p53 and DPC4 genes during pancreatic carcinogenesis. Am J Pathol 158: 1677PubMedGoogle Scholar
  27. 27.
    Bartsch D, Hahn SA, Danichevski KD, Bastian D, Galehdari H, Barth P, Schmiegel W, Simon B, Rothmund M (1999) Mutations of the DPC4/Smad4 gene in neuroendocrine pancreatic tumors. Oncogene 18: 2367CrossRefGoogle Scholar
  28. 28.
    Lei J, Zou TT, Shi YQ, Zhou X, Smolinski KN, Yin J, Appel R, Wang S, Cymes K, Chan O, Abraham JM, Harpaz N, Meltzer JS (1996) Infrequent DPC4 gene mutation in esophageal cancer, gastric cancer and ulceratice colitis-associated neoplasms. Oncogene 13: 2459PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Marijana Popović Hadžija
    • 1
    • 1
    Email author
  • Reno Hrašćan
    • 1
  • Maja Herak Bosnar
    • 1
  • Žarko Zeljko
    • 2
  • Mirko Hadžija
    • 1
  • Josip Čadež
    • 3
  • Krešimir Pavelić
    • 1
  • Sanja Kapitanović
    • 1
  1. 1.Division of Molecular MedicineRudjer Bošković Institute
  2. 2.Clinical Hospital MerkurZagreb
  3. 3.Medical FacultyUniversity of Zagreb

Personalised recommendations