Urological Research

, Volume 31, Issue 5, pp 335–340

Tumour vascular endothelial growth factor (VEGF) mRNA in relation to serum VEGF protein levels and tumour progression in human renal cell carcinoma

  • Börje Ljungberg
  • Jan Jacobsen
  • Stina Häggström-Rudolfssson
  • Torgny Rasmuson
  • Gudrun Lindh
  • Kjell Grankvist
Original Paper

Abstract

Angiogenesis is gaining interest because of its importance in tumour growth and metastasis. Renal cell carcinoma (RCC) is known to be a well-vascularized tumour. The aim of this study was to evaluate the expression of VEGF mRNA and receptor flt-1 mRNA (VEGF R1) in a clinical material of RCCs compared with clinicopathological variables and serum VEGF levels. Total RNA was extracted from snap-frozen tumour tissue obtained from 61 patients. Expression of mRNA for VEGF121, VEGF165 and flt-1 were analysed using quantitative RT-PCR. Relative VEGF mRNA levels, corrected for corresponding cyclophilin value, were related to stage, grade, RCC type and survival time. Serum VEGF165 protein was analysed using a quantitative ELISA. Papillary RCC had significantly lower VEGF121 and flt-1 mRNA levels compared with conventional RCC (p=0.001). VEGF121 mRNA levels were significantly lower in locally advanced tumours in relation to tumours limited to the kidney and those with metastatic disease (p=0.047 and p=0.036). This statistical difference disappeared when only conventional RCCs were evaluated. No association was found between VEGF mRNA levels and nuclear grade. Patients with lower VEGF121 mRNA levels had significantly longer survival time compared with those with higher levels (when adjusted to stage, p=0.0097, log rank test). There was an inverse relation between VEGF165 mRNA and serum VEGF165 levels. The trend to lower VEGF121 mRNA levels in locally advanced RCC indicate that angiogenic activity and degradation might be up-regulated in tumours with a high ability to invade. The association with tumour progression shows that VEGF is a promising angiogenic factor especially important in conventional RCCs. VEGF expression might possibly be of help to identify RCCs susceptible for anti-angiogenic therapies.

Keywords

Renal cell carcinoma mRNA VEGF flt-1 RT-PCR Prognosis 

References

  1. 1.
    Baccala AA, Zhong H, Clift SM, Nelson WG, Marshall FF, Passe TJ, Gambill NB, Simons JW (1998) Serum vascular endothelial growth factor is a candidate biomarker of metastatic tumor response to ex vivo gene therapy of renal cell cancer. Urology 51: 327CrossRefPubMedGoogle Scholar
  2. 2.
    Berger DP, Herbstritt L, Dengler WA, Marme D, Mertelsmann R, Fiebig HH (1995) Vascular endothelial growth factor (VEGF) mRNA expression in human tumor models of different histologies. Ann Oncol 6: 817Google Scholar
  3. 3.
    Brieger J, Weidt EJ, Schirmacher P, Storkel S, Huber C, Decker HJ (1999) Inverse regulation of vascular endothelial growth factor and VHL tumor suppressor gene in sporadic renal cell carcinomas is correlated with vascular growth: an in vivo study on 29 tumors. J Mol Med 77: 505CrossRefPubMedGoogle Scholar
  4. 4.
    Cohen T, Gitay-Goren H, Sharon R, Shibuya M, Halaban R, Levi BZ, Neufeld G (1995) VEGF121, a vascular endothelial growth factor (VEGF) isoform lacking heparin binding ability, requires cell-surface heparan sulfates for efficient binding to the VEGF receptors of human melanoma cells. J Biol Chem 270: 11322CrossRefPubMedGoogle Scholar
  5. 5.
    Damert A, Machein M, Breier G, Fujita MQ, Hanahan D, Risau W, Plate KH (1997) Up-regulation of vascular endothelial growth factor expression in a rat glioma is conferred by two distinct hypoxia-driven mechanisms. Cancer Res 57: 3860PubMedGoogle Scholar
  6. 6.
    Folkman J, D'Amore PA (1996) Blood vessel formation: what is its molecular basis? Cell 87: 1153PubMedGoogle Scholar
  7. 7.
    Fontanini G, Lucchi M, Vignati S, Mussi A, Ciardiello F, De Laurentiis M, De Placido S, Basolo F, Angeletti CA, Bevilacqua G (1997) Angiogenesis as a prognostic indicator of survival in non-small-cell lung carcinoma: a prospective study. J Natl Cancer Inst 89: 881PubMedGoogle Scholar
  8. 8.
    Gunningham SP, Currie MJ, Han C, Turner K, Scott PA, Robinson BA, Harris AL, Fox SB (2001) Vascular endothelial growth factor-B and vascular endothelial growth factor-C expression in renal cell carcinomas: regulation by the von Hippel-Lindau gene and hypoxia. Cancer Res 61: 3206PubMedGoogle Scholar
  9. 9.
    Häggstrom S, Wikström P, Bergh A, Damber JE (1998) Expression of vascular endothelial growth factor and its receptors in the rat ventral prostate and Dunning R3327 PAP adenocarcinoma before and after castration. Prostate 3: 71CrossRefGoogle Scholar
  10. 10.
    Hemmerlein B, Kugler A, Ozisik R, Ringert RH, Radzun HJ, Thelen P (2001) Vascular endothelial growth factor expression, angiogenesis, and necrosis in renal cell carcinomas. Virchows Arch 439: 645PubMedGoogle Scholar
  11. 11.
    Hiratsuku S, Maru Y, Okada A, Seiki M, NodA T, Shibuya M (2001) Involvement of Flt-1 tyrosine kinase (vascular endothelial growth receptor-1) in pathological angiogenesis. Cancer Res 61: 1207PubMedGoogle Scholar
  12. 12.
    Jacobsen J, Rasmuson T, Grankvist K, Ljungberg B (2000) Vascular endothelial growth factor as prognostic factor in renal cell carcinoma. J Urol 163:343–347PubMedGoogle Scholar
  13. 13.
    Kearney JB, Ambler CA, Monaco KA, Johnson N, Rapoport RG, Bautch VL (2002) Vascular endothelial growth factor receptor Flt-1 negatively regulates developmental blood vessel formation by modulating endothelial cell division. Blood 99: 2397CrossRefPubMedGoogle Scholar
  14. 14.
    Knebelmann B, Ananth S, Cohen HT, Sukhatme VP (1998) Transforming growth factor alpha is a target for the von Hippel-Lindau tumor suppressor. Cancer Res 58: 226PubMedGoogle Scholar
  15. 15.
    Kovacs G, Akhtar M, Beckwith BJ, Bugert P, Cooper CS, Delahunt B, Eble JN, Fleming S, Ljungberg B, Medeiros LJ, Moch H, Reuter VE, Ritz E, Roos G, Schmidt D, Srigley JR, Störkel S, Vandenberg E, Zbar B (1997) The Heidelberg classification of renal cell tumors. J Pathol 183: 131CrossRefPubMedGoogle Scholar
  16. 16.
    Krieg M, Haas R, Brauch H, Acker T, Flamme I, Plate KH (2000) Up-regulation of hypoxia-inducible factors HIF-1alpha and HIF-2alpha under normoxic conditions in renal carcinoma cells by von Hippel-Lindau tumor suppressor gene loss of function. Oncogene 19: 5435PubMedGoogle Scholar
  17. 17.
    Ljungberg B, Mehle C, Stenling R, Roos G (1996) Heterogeneity in renal cell carcinoma and its impact on prognosis—a flow cytometric study. Br J Cancer 74: 123PubMedGoogle Scholar
  18. 18.
    Ljungberg B, Iranparvar Alamdari F, Stenling R, Roos G (1999) Prognostic significance of the Heidelberg Classification of renal cell carcinoma. Eur Urol 36: 565CrossRefPubMedGoogle Scholar
  19. 19.
    MacLennan GT, Bostwick DG (1995) Microvessel density in renal cell carcinoma: lack of prognostic significance. Urology 46: 2CrossRefPubMedGoogle Scholar
  20. 20.
    Nativ O, Sabo E, Reiss A, Wald M, Madjar S, Moskovitz B (1998) Clinical significance of tumor angiogenesis in patients with localized renal cell carcinoma. Urology 51: 693CrossRefPubMedGoogle Scholar
  21. 21.
    Nicol D, Hii SI, Walsh M, Teh B, Thompson L, Kennett C, Gotley D (1997) Vascular endothelial growth factor expression is increased in renal cell carcinoma. J Urol 157: 1482PubMedGoogle Scholar
  22. 22.
    Paradis V, Lagha NB, Zeimoura L, Blanchet P, Eschwege P, Ba N, Benoit G, Jardin A, Bedossa P (2000) Expression of vascular endothelial growth factor in renal cell carcinomas. Virchows Arch 436: 351CrossRefPubMedGoogle Scholar
  23. 23.
    Park JE, Keller GA, Ferrara N (1993) The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol Biol Cell 4: 1317PubMedGoogle Scholar
  24. 24.
    Skinner DG, Colvin RB, Vermillion CD, Pfister RC, Leadbetter WF (1971) Diagnosis and management of renal cell carcinoma. A clinical and pathologic study of 309 cases. Cancer 28: 1165Google Scholar
  25. 25.
    Slaton JW, Inoue K, Perrotte P, El-Naggar AK, Swanson DA, Fidler IJ, Dinney CP (2001) Expression levels of genes that regulate metastasis and angiogenesis correlate with advanced pathological stage of renal cell carcinoma. Am J Pathol 158: 735Google Scholar
  26. 26.
    Sobin LH, Wittekind CH (eds) (1997) International Union Against Cancer (UICC). TNM classification of malignant tumours, 5th edn. New York, p 180Google Scholar
  27. 27.
    Takahashi A, Sasaki H, Kim SJ, Tobisu K, Kakizoe T, Tsukamoto T, Kumamoto Y, Sugimura T, Terada M (1994) Markedly increased amounts of messenger RNAs for vascular endothelial growth factor and placenta growth factor in renal cell carcinoma associated with angiogenesis. Cancer Res 54: 4233PubMedGoogle Scholar
  28. 28.
    Tomisawa M, Tokunaga T, Oshika Y, Tsuchida T, Fukushima Y, Sato H, Kijima H, Yamazaki H, Ueyama Y, Tamaoki N, Nakamura M (1999) Expression pattern of vascular endothelial growth factor isoform is closely correlated with tumour stage and vascularisation in renal cell carcinoma. Eur J Cancer 35: 133CrossRefPubMedGoogle Scholar
  29. 29.
    Wiesener MS, Munchenhagen PM, Berger I, Morgan NV, Roigas J, Schwiertz A, Jurgensen JS, Gruber G, Maxwell PH, Loning SA, Frei U, Maher ER, Grone HJ, Eckardt KU (2001) Constitutive activation of hypoxia-inducible genes related to overexpression of hypoxia-inducible factor-1alpha in clear cell renal carcinomas. Cancer Res 61: 5215PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Börje Ljungberg
    • 1
  • Jan Jacobsen
    • 1
  • Stina Häggström-Rudolfssson
    • 1
  • Torgny Rasmuson
    • 2
  • Gudrun Lindh
    • 1
  • Kjell Grankvist
    • 3
  1. 1.Departments of Surgical and Perioperative Sciences, Urology and AndrologyUmeå UniversityUmeåSweden
  2. 2.Radiation Sciences, OncologyUmeå UniversityUmeåSweden
  3. 3.Medical Biosciences, Clinical ChemistryUmeå UniversityUmeåSweden

Personalised recommendations