Advertisement

Journal of Molecular Evolution

, Volume 87, Issue 9–10, pp 271–288 | Cite as

Why Nature Chose Potassium

  • Antoine DanchinEmail author
  • Pablo Iván Nikel
Review

Abstract

The presence of most of the atoms involved in the building up of living cells can be explained by their intrinsic physico-chemical properties. Yet, the involvement of the alkali metal potassium cation (K+) is somewhat of a mystery for most scenarios of origins of life, as this element is less abundant than its sodium counterpart in sea water, the original medium bathing the majority of proposed sites as the cradle of life. Potassium is involved in key processes that could as well have been fulfilled by sodium (such as maintenance of an electrochemical potential or homeostatic osmolarity). However, K+ is also required for the setup of a functional translation machinery, as well as for a fairly enigmatic metabolic pathway involving the usually toxic metabolite methylglyoxal. Here we discuss the possibility that potassium has been selected because of some of its idiosyncratic properties or whether it is just the outcome of the accidental place where life was born. Specific physico-chemical properties of the K+ ion would argue in favour of positive selection in the course of life’s evolution. By contrast, the latter explanation would require that life originated on potassium-rich environments, possibly continental but yet of unknown location, making K+ presence just a frozen accident of evolution.

Keywords

Ribosome Splicing Water structure nanoRNases Abiogenesis Landauer’s principle 

Notes

Acknowledgements

This work was supported by AMAbiotics SAS as one of the background studies meant to place microbiomes in a functional perspective. The financial support from The Novo Nordisk Foundation (Grant NNF10CC1016517, and LiFe, NNF18OC0034818) and the Danish Council for Independent Research (SWEET, DFF-Research Project 8021-00039B) to P.I.N. is gratefully acknowledged.

Compliance with Ethical Standards

Conflict of interest

All authors declare that they have no conflict of interest.

References

  1. Abousaab A, Lang F (2016) Up-regulation of excitatory amino acid transporters EAAT3 and EAAT4 by lithium sensitive glycogen synthase kinase GSK3ss. Cell Physiol Biochem 40:1252–1260PubMedGoogle Scholar
  2. Adams E, Miyazaki T, Saito S, Uozumi N, Shin R (2019a) Cesium inhibits plant growth primarily through reduction of potassium influx and accumulation in Arabidopsis. Plant Cell Physiol 60:63–76PubMedGoogle Scholar
  3. Adams E, Miyazaki T, Shin R (2019b) Contribution of KUPs to potassium and cesium accumulation appears complementary in Arabidopsis. Plant Signal Behav 14:1554468PubMedGoogle Scholar
  4. Ali MK, Li X, Tang Q, Liu X, Chen F, Xiao J, Ali M, Chou SH, He J (2017) Regulation of inducible potassium transporter KdpFABC by the KdpD/KdpE two-component system in Mycobacterium smegmatis. Front Microbiol 8:570PubMedPubMedCentralGoogle Scholar
  5. Allaman I, Belanger M, Magistretti PJ (2015) Methylglyoxal, the dark side of glycolysis. Front Neurosci 9:23PubMedPubMedCentralGoogle Scholar
  6. Altendorf K, Siebers A, Epstein W (1992) The KDP ATPase of Escherichia coli. Ann N Y Acad Sci 671:228–243PubMedGoogle Scholar
  7. Anand B, Surana P, Prakash B (2010) Deciphering the catalytic machinery in 30S ribosome assembly GTPase YqeH. PLoS ONE 5:e9944PubMedPubMedCentralGoogle Scholar
  8. Ash MR, Maher MJ, Guss JM, Jormakka M (2011) The structure of an N11A mutant of the G-protein domain of FeoB. Acta Crystallogr, Sect F: Struct Biol Cryst Commun 67:1511–1515Google Scholar
  9. Auffinger P, Bielecki L, Westhof E (2004) Symmetric K+ and Mg2+ ion-binding sites in the 5S rRNA loop E inferred from molecular dynamics simulations. J Mol Biol 335:555–571PubMedGoogle Scholar
  10. Auffinger P, D’Ascenzo L, Ennifar E (2016) Sodium and potassium interactions with nucleic acids. Met Ions Life Sci 16:167–201PubMedGoogle Scholar
  11. Bada JL, Bigham C, Miller SL (1994) Impact melting of frozen oceans on the early Earth: implications for the origin of life. Proc Natl Acad Sci USA 91:1248–1250PubMedGoogle Scholar
  12. Ball P (2017) Water is an active matrix of life for cell and molecular biology. Proc Natl Acad Sci USA 114:13327–13335PubMedGoogle Scholar
  13. Ball P, Hallsworth JE (2015) Water structure and chaotropicity: their uses, abuses and biological implications. Phys Chem Chem Phys 17:8297–8305PubMedGoogle Scholar
  14. Barreto L, Canadell D, Valverde-Saubi D, Casamayor A, Arino J (2012) The short-term response of yeast to potassium starvation. Environ Microbiol 14:3026–3042PubMedGoogle Scholar
  15. Biggin PC, Smith GR, Shrivastava I, Choe S, Sansom MS (2001) Potassium and sodium ions in a potassium channel studied by molecular dynamics simulations. Biochim Biophys Acta 1510:1–9PubMedGoogle Scholar
  16. Blasic JR, Worcester DL, Gawrisch K, Gurnev P, Mihailescu M (2015) Pore hydration states of KcsA potassium channels in membranes. J Biol Chem 290:26765–26775PubMedPubMedCentralGoogle Scholar
  17. Boel G, Danot O, de Lorenzo V, Danchin A (2019) Omnipresent Maxwell’s demons orchestrate information management in living cells. Microb Biotechnol 12:210–242PubMedPubMedCentralGoogle Scholar
  18. Brown BM, Nguyen HM, Wulff H (2019) Recent advances in our understanding of the structure and function of more unusual cation channels. F1000Res 1:8Google Scholar
  19. Caetano-Anolles G, Kim KM, Caetano-Anolles D (2012) The phylogenomic roots of modern biochemistry: origins of proteins, cofactors and protein biosynthesis. J Mol Evol 74:1–34PubMedGoogle Scholar
  20. Capera J, Serrano-Novillo C, Navarro-Perez M, Cassinelli S, Felipe A (2019) The potassium channel odyssey: mechanisms of traffic and membrane arrangement. Int J Mol Sci 20:734PubMedCentralGoogle Scholar
  21. Cases I, Perez-Martin J, de Lorenzo V (1999) The IIANtr (PtsN) protein of Pseudomonas putida mediates the C source inhibition of the σ54-dependent Pu promoter of the TOL plasmid. J Biol Chem 274:15562–15568PubMedGoogle Scholar
  22. Cases I, Lopez JA, Albar JP, De Lorenzo V (2001) Evidence of multiple regulatory functions for the PtsN (IIA(Ntr)) protein of Pseudomonas putida. J Bacteriol 183:1032–1037PubMedPubMedCentralGoogle Scholar
  23. Cavalazzi B, Barbieri R, Gomez F, Capaccioni B, Olsson-Francis K, Pondrelli M, Rossi AP, Hickman-Lewis K, Agangi A, Gasparotto G, Glamoclija M, Ori GG, Rodriguez N, Hagos M (2019) The Dallol geothermal area, northern Afar (Ethiopia)-an exceptional planetary field analog on Earth. Astrobiology 19:553–578PubMedPubMedCentralGoogle Scholar
  24. Chandrangsu P, Loi VV, Antelmann H, Helmann JD (2018) The role of bacillithiol in Gram-positive Firmicutes. Antioxid Redox Signal 28:445–462PubMedPubMedCentralGoogle Scholar
  25. Chang TM, Cooper RJ, Williams ER (2013) Locating protonated amines in clathrates. J Am Chem Soc 135:14821–14830PubMedGoogle Scholar
  26. Chen G, Kennedy SD, Qiao J, Krugh TR, Turner DH (2006) An alternating sheared AA pair and elements of stability for a single sheared purine-purine pair flanked by sheared GA pairs in RNA. Biochemistry 45:6889–6903PubMedPubMedCentralGoogle Scholar
  27. Collins KD (1997) Charge density-dependent strength of hydration and biological structure. Biophys J 72:65–76PubMedPubMedCentralGoogle Scholar
  28. Cooper RJ, Chang TM, Williams ER (2013) Hydrated alkali metal ions: spectroscopic evidence for clathrates. J Phys Chem A 117:6571–6579PubMedGoogle Scholar
  29. Corrigan RM, Bellows LE, Wood A, Grundling A (2016) ppGpp negatively impacts ribosome assembly affecting growth and antimicrobial tolerance in Gram-positive bacteria. Proc Natl Acad Sci USA 113:E1710–E1719PubMedGoogle Scholar
  30. Danchin A (1989) Homeotopic transformation and the origin of translation. Prog Biophys Mol Biol 54:81–86PubMedGoogle Scholar
  31. Danchin A (2017a) Coping with inevitable accidents in metabolism. Microb Biotechnol 10:57–72PubMedGoogle Scholar
  32. Danchin A (2017b) From chemical metabolism to life: the origin of the genetic coding process. Beilstein J Org Chem 13:1119–1135PubMedPubMedCentralGoogle Scholar
  33. Danchin A, Fang G (2016) Unknown unknowns: essential genes in quest for function. Microb Biotechnol 9:530–540PubMedPubMedCentralGoogle Scholar
  34. Deamer D (2017) Conjecture and hypothesis: the importance of reality checks. Beilstein J Org Chem 13:620–624PubMedPubMedCentralGoogle Scholar
  35. Delemotte L (2018) Opening leads to closing: allosteric crosstalk between the activation and inactivation gates in KcsA. J Gen Physiol 150:1356–1359PubMedPubMedCentralGoogle Scholar
  36. Deuschle M, Limbrunner S, Rother D, Wahler S, Chavarria M, de Lorenzo V, Kremling A, Pfluger-Grau K (2015) Interplay of the PtsN (EIIANtr) protein of Pseudomonas putida with its target sensor kinase KdpD. Environ Microbiol Rep 7:899–907PubMedGoogle Scholar
  37. Deutscher J, Ake FM, Derkaoui M, Zebre AC, Cao TN, Bouraoui H, Kentache T, Mokhtari A, Milohanic E, Joyet P (2014) The bacterial phosphoenolpyruvate:carbohydrate phosphotransferase system: regulation by protein phosphorylation and phosphorylation-dependent protein-protein interactions. Microbiol Mol Biol Rev 78:231–256PubMedPubMedCentralGoogle Scholar
  38. Dever TE, Ivanov IP (2018) Roles of polyamines in translation. J Biol Chem 293:18719–18729PubMedGoogle Scholar
  39. Dibrova DV, Galperin MY, Koonin EV, Mulkidjanian AY (2015) Ancient systems of sodium/potassium homeostasis as predecessors of membrane bioenergetics. Biochemistry 80:495–516PubMedGoogle Scholar
  40. Dickmanns A, Zschiedrich CP, Arens J, Parfentev I, Gundlach J, Hofele R, Neumann P, Urlaub H, Gorke B, Ficner R, Stulke J (2018) Structural basis for the regulatory interaction of the methylglyoxal synthase MgsA with the carbon flux regulator Crh in Bacillus subtilis. J Biol Chem 293:5781–5792PubMedPubMedCentralGoogle Scholar
  41. Diskowski M, Mikusevic V, Stock C, Hanelt I (2015) Functional diversity of the superfamily of K+ transporters to meet various requirements. Biol Chem 396:1003–1014PubMedGoogle Scholar
  42. Douglas KT, Bunni MA, Baindur SR (1990) Thallium in biochemistry. Int J Biochem 22:429–438PubMedGoogle Scholar
  43. Dubina MV, Vyazmin SY, Boitsov VM, Nikolaev EN, Popov IA, Kononikhin AS, Eliseev IE, Natochin YV (2013) Potassium ions are more effective than sodium ions in salt induced peptide formation. Orig Life Evol Biosph 43:109–117PubMedPubMedCentralGoogle Scholar
  44. Epstein E (1973) Mechanisms of ion transport through plant cell membranes. Int Rev Cytol 34:123–168Google Scholar
  45. Epstein W (2016) The KdpD sensor kinase of Escherichia coli responds to several distinct signals to turn on expression of the Kdp transport system. J Bacteriol 198:212–220PubMedGoogle Scholar
  46. Erickson AI, Sarsam RD, Fisher AJ (2015) Crystal structures of Mycobacterium tuberculosis CysQ, with substrate and products bound. Biochemistry 54:6830–6841PubMedGoogle Scholar
  47. Faisal Tarique K, Arif Abdul Rehman S, Gourinath S (2014) Structural elucidation of a dual-activity PAP phosphatase-1 from Entamoeba histolytica capable of hydrolysing both 3′-phosphoadenosine 5′-phosphate and inositol 1,4-bisphosphate. Acta Crystallogr D Biol Crystallogr 70:2019–2031PubMedGoogle Scholar
  48. Fan Y, Gaffney BL, Jones RA (2005) RNA GG x UU motif binds K+ but not Mg2+. J Am Chem Soc 127:17588–17589PubMedGoogle Scholar
  49. Ferguson GP, Munro AW, Douglas RM, McLaggan D, Booth IR (1993) Activation of potassium channels during metabolite detoxification in Escherichia coli. Mol Microbiol 9:1297–1303PubMedGoogle Scholar
  50. Ferguson GP, Totemeyer S, MacLean MJ, Booth IR (1998) Methylglyoxal production in bacteria: suicide or survival? Arch Microbiol 170:209–218PubMedGoogle Scholar
  51. Fislage M, Wauters L, Versees W (2016) Invited review: MnmE, a GTPase that drives a complex tRNA modification reaction. Biopolymers 105:568–579PubMedGoogle Scholar
  52. Flaherty KM, DeLuca-Flaherty C, McKay DB (1990) Three-dimensional structure of the ATPase fragment of a 70 K heat-shock cognate protein. Nature 346:623–628PubMedGoogle Scholar
  53. Francis BR (2013) Evolution of the genetic code by incorporation of amino acids that improved or changed protein function. J Mol Evol 77:134–158PubMedGoogle Scholar
  54. Francis BR (2015) The hypothesis that the genetic code originated in coupled synthesis of proteins and the evolutionary predecessors of nucleic acids in primitive cells. Life 5:467–505PubMedPubMedCentralGoogle Scholar
  55. Fritz SE, Haque N, Hogg JR (2018) Highly efficient in vitro translation of authentic affinity-purified messenger ribonucleoprotein complexes. RNA 24:982–989PubMedPubMedCentralGoogle Scholar
  56. Garza-Ramos G, Mujica-Jimenez C, Munoz-Clares RA (2013) Potassium and ionic strength effects on the conformational and thermal stability of two aldehyde dehydrogenases reveal structural and functional roles of K+-binding sites. PLoS ONE 8:e54899PubMedPubMedCentralGoogle Scholar
  57. Gebala M, Johnson SL, Narlikar GJ, Herschlag D (2019) Ion counting demonstrates a high electrostatic field generated by the nucleosome. Elife 8:e44993PubMedPubMedCentralGoogle Scholar
  58. Gehring PJ, Hammond PB (1967) The interrelationship between thallium and potassium in animals. J Pharmacol Exp Ther 155:187–201PubMedGoogle Scholar
  59. Gohara DW, Di Cera E (2016) Molecular mechanisms of enzyme activation by monovalent cations. J Biol Chem 291:20840–20848PubMedPubMedCentralGoogle Scholar
  60. Goncalves CA, Rodrigues L, Bobermin LD, Zanotto C, Vizuete A, Quincozes-Santos A, Souza DO, Leite MC (2019) Glycolysis-derived compounds from astrocytes that modulate synaptic communication. Front Neurosci 12:1035PubMedPubMedCentralGoogle Scholar
  61. Greie JC, Altendorf K (2007) The K + -translocating KdpFABC complex from Escherichia coli: a P-type ATPase with unique features. J Bioenerg Biomembr 39:397–402PubMedGoogle Scholar
  62. Gruber R, Horovitz A (2016) Allosteric mechanisms in chaperonin machines. Chem Rev 116:6588–6606PubMedGoogle Scholar
  63. Gumz ML, Rabinowitz L, Wingo CS (2015) An integrated view of potassium homeostasis. N Engl J Med 373:1787–1788PubMedGoogle Scholar
  64. Gundlach J, Herzberg C, Hertel D, Thurmer A, Daniel R, Link H, Stulke J (2017) Adaptation of Bacillus subtilis to life at extreme potassium limitation. MBio 8:e00861-17PubMedPubMedCentralGoogle Scholar
  65. Gundlach J, Commichau FM, Stulke J (2018) Perspective of ions and messengers: an intricate link between potassium, glutamate, and cyclic di-AMP. Curr Genet 64:191–195PubMedGoogle Scholar
  66. Gundlach J, Kruger L, Herzberg C, Turdiev A, Poehlein A, Tascon I, Weiss M, Hertel D, Daniel R, Hanelt I, Lee VT, Stulke J (2019) Sustained sensing in potassium homeostasis: cyclic di-AMP controls potassium uptake by KimA at the levels of expression and activity. J Biol Chem 294:9605–9614PubMedGoogle Scholar
  67. Hagelueken G, Hoffmann J, Schubert E, Duthie FG, Florin N, Konrad L, Imhof D, Behrmann E, Morgner N, Schiemann O (2016) Studies on the X-ray and solution structure of FeoB from Escherichia coli BL21. Biophys J 110:2642–2650PubMedPubMedCentralGoogle Scholar
  68. Hagemann M (2011) Molecular biology of cyanobacterial salt acclimation. FEMS Microbiol Rev 35:87–123PubMedGoogle Scholar
  69. Hamann K, Zimmann P, Altendorf K (2008) Reduction of turgor is not the stimulus for the sensor kinase KdpD of Escherichia coli. J Bacteriol 190:2360–2367PubMedPubMedCentralGoogle Scholar
  70. Hicks DB, Liu J, Fujisawa M, Krulwich TA (2010) F1F0-ATP synthases of alkaliphilic bacteria: lessons from their adaptations. Biochim Biophys Acta 1797:1362–1377PubMedPubMedCentralGoogle Scholar
  71. Ho CH, Tsay YF (2010) Nitrate, ammonium, and potassium sensing and signaling. Curr Opin Plant Biol 13:604–610PubMedGoogle Scholar
  72. Hoque TS, Okuma E, Uraji M, Furuichi T, Sasaki T, Hoque MA, Nakamura Y, Murata Y (2012) Inhibitory effects of methylglyoxal on light-induced stomatal opening and inward K+ channel activity in Arabidopsis. Biosci Biotechnol Biochem 76:617–619PubMedGoogle Scholar
  73. Hoque TS, Hossain MA, Mostofa MG, Burritt DJ, Fujita M, Tran LS (2016) Methylglyoxal: an emerging signaling molecule in plant abiotic stress responses and tolerance. Front Plant Sci 7:1341PubMedPubMedCentralGoogle Scholar
  74. Hunt TS (1891) Potassium salts in sea-water. Nature 43:463–464Google Scholar
  75. Iacomino G, Picariello G, D’Agostino L (2012) DNA and nuclear aggregates of polyamines. Biochim Biophys Acta 1823:1745–1755PubMedGoogle Scholar
  76. Iliopoulos I, Ananiadou S, Danchin A, Ioannidis JP, Katsikis PD, Ouzounis CA, Promponas VJ (2019) Hypothesis, analysis and synthesis, it’s all Greek to me. Elife.  https://doi.org/10.7554/eLife.43514 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Jakubowski H (2017) Homocysteine editing, thioester chemistry, coenzyme A, and the origin of coded peptide synthesis. Life 7:6PubMedCentralGoogle Scholar
  78. Jia B, Pu ZJ, Tang K, Jia X, Kim KH, Liu X, Jeon CO (2018) Catalytic, computational, and evolutionary analysis of the d-lactate dehydrogenases responsible for d-lactic acid production in lactic acid bacteria. J Agric Food Chem 66:8371–8381PubMedGoogle Scholar
  79. Jiang T, Guo X, Yan J, Zhang Y, Wang Y, Zhang M, Sheng B, Ma C, Xu P, Gao C (2017) A bacterial multidomain NAD-independent d-lactate dehydrogenase utilizes flavin adenine dinucleotide and Fe-S clusters as cofactors and quinone as an electron acceptor for d-lactate oxidization. J Bacteriol 199:e00342-17PubMedPubMedCentralGoogle Scholar
  80. Kashket ER (1979) Active transport of thallous ions by Streptococcus lactis. J Biol Chem 254:8129–8131PubMedGoogle Scholar
  81. Kemnic TR, Coleman M (2019) Thallium Toxicity StatPearls review books (Internet). StatPearls Publishing, Treasure IslandGoogle Scholar
  82. Klumpp S, Zhang Z, Hwa T (2009) Growth rate-dependent global effects on gene expression in bacteria. Cell 139:1366–1375PubMedPubMedCentralGoogle Scholar
  83. Krymkiewicz N (1973) Reactions of methylglyoxal with nucleic acids. FEBS Lett 29:51–54PubMedGoogle Scholar
  84. Kuhle B, Ficner R (2014) A monovalent cation acts as structural and catalytic cofactor in translational GTPases. EMBO J 33:2547–2563PubMedPubMedCentralGoogle Scholar
  85. Kumar A, Satpati P (2018) Principle of K+/Na+ selectivity in the active site of group II intron at various stages of self-splicing pathway. J Mol Gr Model 84:1–9Google Scholar
  86. Kwak JM, Murata Y, Baizabal-Aguirre VM, Merrill J, Wang M, Kemper A, Hawke SD, Tallman G, Schroeder JI (2001) Dominant negative guard cell K + channel mutants reduce inward-rectifying K+ currents and light-induced stomatal opening in Arabidopsis. Plant Physiol 127:473–485PubMedPubMedCentralGoogle Scholar
  87. Landauer R (1961) Irreversibility and heat generation in the computing process. IBM J Res Dev 3:184–191Google Scholar
  88. Lartigue C, Glass JI, Alperovich N, Pieper R, Parmar PP, Hutchison CA 3rd, Smith HO, Venter JC (2007) Genome transplantation in bacteria: changing one species to another. Science 317:632–638PubMedGoogle Scholar
  89. Laskowski M, Augustynek B, Kulawiak B, Koprowski P, Bednarczyk P, Jarmuszkiewicz W, Szewczyk A (2016) What do we not know about mitochondrial potassium channels? Biochim Biophys Acta 1857:1247–1257PubMedGoogle Scholar
  90. Lee CR, Cho SH, Yoon MJ, Peterkofsky A, Seok YJ (2007) Escherichia coli enzyme IIANtr regulates the K+ transporter TrkA. Proc Natl Acad Sci USA 104:4124–4129PubMedGoogle Scholar
  91. Lee J, Park YH, Kim YR, Seok YJ, Lee CR (2015) Dephosphorylated NPr is involved in an envelope stress response of Escherichia coli. Microbiology 161:1113–1123PubMedPubMedCentralGoogle Scholar
  92. Leonarski F, D’Ascenzo L, Auffinger P (2019) Nucleobase carbonyl groups are poor Mg(2 +) inner-sphere binders but excellent monovalent ion binders-a critical PDB survey. RNA 25:173–192PubMedPubMedCentralGoogle Scholar
  93. Levy M, Miller SL, Brinton K, Bada JL (2000) Prebiotic synthesis of adenine and amino acids under Europa-like conditions. Icarus 145:609–613PubMedGoogle Scholar
  94. Li Z, Pan Q, Xiao Y, Fang X, Shi R, Fu C, Danchin A, You C (2019) Deciphering global gene expression and regulation strategy in Escherichia coli during carbon limitation. Microb Biotechnol 12:360–376PubMedGoogle Scholar
  95. Lightfoot HL, Hall J (2014) Endogenous polyamine function–the RNA perspective. Nucleic Acids Res 42:11275–11290PubMedPubMedCentralGoogle Scholar
  96. Lin JJ, Carey M (2012) In vitro transcription and immobilized template analysis of preinitiation complexes. Curr Protoc Mol Biol Chapter 97:12–14Google Scholar
  97. Linster CL, Van Schaftingen E, Hanson AD (2013) Metabolite damage and its repair or pre-emption. Nat Chem Biol 9:72–80PubMedGoogle Scholar
  98. Lipmann F (1971) Attempts to map a process evolution of peptide biosynthesis. Science 173:875–884PubMedGoogle Scholar
  99. Liu YB, Chen C, Chaudhry MT, Si MR, Zhang L, Wang Y, Shen XH (2014) Enhancing Corynebacterium glutamicum robustness by over-expressing a gene, mshA, for mycothiol glycosyltransferase. Biotechnol Lett 36:1453–1459PubMedGoogle Scholar
  100. Locascio A, Andres-Colas N, Mulet JM, Yenush L (2019) Saccharomyces cerevisiae as a tool to investigate plant potassium and sodium transporters. Int J Mol Sci 20:2133PubMedCentralGoogle Scholar
  101. Lopez-Coronado JM, Belles JM, Lesage F, Serrano R, Rodriguez PL (1999) A novel mammalian lithium-sensitive enzyme with a dual enzymatic activity, 3′-phosphoadenosine 5′-phosphate phosphatase and inositol-polyphosphate 1-phosphatase. J Biol Chem 274:16034–16039PubMedGoogle Scholar
  102. Lu M (2019) Structure and mechanism of the divalent anion/Na+ symporter. Int J Mol Sci 20:440PubMedCentralGoogle Scholar
  103. Luttmann D, Gopel Y, Gorke B (2012) The phosphotransferase protein EIIANtr modulates the phosphate starvation response through interaction with histidine kinase PhoR in Escherichia coli. Mol Microbiol 86:96–110PubMedGoogle Scholar
  104. Luttmann D, Gopel Y, Gorke B (2015) Cross-talk between the canonical and the nitrogen-related phosphotransferase systems modulates synthesis of the KdpFABC potassium transporter in Escherichia coli. J Mol Microbiol Biotechnol 25:168–177PubMedGoogle Scholar
  105. Manikas RG, Thomson E, Thoms M, Hurt E (2016) The K+-dependent GTPase Nug1 is implicated in the association of the helicase Dbp10 to the immature peptidyl transferase centre during ribosome maturation. Nucleic Acids Res 44:1800–1812PubMedPubMedCentralGoogle Scholar
  106. Marcus Y (2014) Concentration dependence of ionic hydration numbers. J Phys Chem B 118:10471–10476PubMedGoogle Scholar
  107. Markovich D (2012) Sodium-sulfate/carboxylate cotransporters (SLC13). Curr Top Membr 70:239–256PubMedGoogle Scholar
  108. Maurer S (2017) The impact of salts on single chain amphiphile membranes and implications for the location of the origin of life. Life 7:44PubMedCentralGoogle Scholar
  109. Mechold U, Ogryzko V, Ngo S, Danchin A (2006) Oligoribonuclease is a common downstream target of lithium-induced pAp accumulation in Escherichia coli and human cells. Nucleic Acids Res 34:2364–2373PubMedPubMedCentralGoogle Scholar
  110. Mechold U, Fang G, Ngo S, Ogryzko V, Danchin A (2007) YtqI from Bacillus subtilis has both oligoribonuclease and pAp-phosphatase activity. Nucleic Acids Res 35:4552–4561PubMedPubMedCentralGoogle Scholar
  111. Meisel JD, Kim DH (2016) Inhibition of lithium-sensitive phosphatase BPNT-1 causes selective neuronal dysfunction in C. elegans. Curr Biol 26:1922–1928PubMedPubMedCentralGoogle Scholar
  112. Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory Edition, Cold Spring HarborGoogle Scholar
  113. Morgan JLW, Evans EGB, Zagotta WN (2019) Functional characterization and optimization of a bacterial cyclic nucleotide-gated channel. J Biol Chem 294:7503–7515PubMedGoogle Scholar
  114. Mork-Morkenstein M, Heermann R, Gopel Y, Jung K, Gorke B (2017) Non-canonical activation of histidine kinase KdpD by phosphotransferase protein PtsN through interaction with the transmitter domain. Mol Microbiol 106:54–73PubMedGoogle Scholar
  115. Mounce BC, Olsen ME, Vignuzzi M, Connor JH (2017) Polyamines and their role in virus infection. Microbiol Mol Biol Rev 81:e00029-17PubMedPubMedCentralGoogle Scholar
  116. Mulkidjanian AY, Bychkov AY, Dibrova DV, Galperin MY, Koonin EV (2012) Origin of first cells at terrestrial, anoxic geothermal fields. Proc Natl Acad Sci USA 109:E821–E830PubMedGoogle Scholar
  117. Muller M, Hopfner KP, Witte G (2015) c-di-AMP recognition by Staphylococcus aureus PstA. FEBS Lett 589:45–51PubMedGoogle Scholar
  118. Muriel-Millan LF, Moreno S, Gallegos-Monterrosa R, Espin G (2017) Unphosphorylated EIIANtr induces ClpAP-mediated degradation of RpoS in Azotobacter vinelandii. Mol Microbiol 104:197–211PubMedGoogle Scholar
  119. Natochin Y, Felitsyn S, Klimova E, Shakhmatova E (2012) K+/Na+ in the animal extracellular fluid at weathering of granitoids and problem of the origin of life. J Evolut Biochem Physiol 48:479–488Google Scholar
  120. Negoda A, Negoda E, Xian M, Reusch RN (2009) Role of polyphosphate in regulation of the Streptomyces lividans KcsA channel. Biochim Biophys Acta 1788:608–614PubMedGoogle Scholar
  121. Negrerie M (2019) Iron transitions during activation of allosteric heme proteins in cell signaling. Metallomics 11:868–893PubMedGoogle Scholar
  122. Nowak T, Suelter C (1981) Pyruvate kinase: activation by and catalytic role of the monovalent and divalent cations. Mol Cell Biochem 35:65–75PubMedGoogle Scholar
  123. Oh YT, Kim J, Youn JH (2013) Role of pituitary in K+ homeostasis: impaired renal responses to altered K + intake in hypophysectomized rats. Am J Physiol Regul Integr Comp Physiol 304:R1166–R1174PubMedPubMedCentralGoogle Scholar
  124. Ohnishi J, Flugge UI, Heldt HW, Kanai R (1990) Involvement of Na in active uptake of pyruvate in mesophyll chloroplasts of some C4 plants: Na/pyruvate cotransport. Plant Physiol 94:950–959PubMedPubMedCentralGoogle Scholar
  125. Ozyamak E, Black SS, Walker CA, Maclean MJ, Bartlett W, Miller S, Booth IR (2010) The critical role of S-lactoylglutathione formation during methylglyoxal detoxification in Escherichia coli. Mol Microbiol 78:1577–1590PubMedPubMedCentralGoogle Scholar
  126. Page MJ, Di Cera E (2006) Role of Na+ and K+ in enzyme function. Physiol Rev 86:1049–1092PubMedGoogle Scholar
  127. Papa S, Capitanio G, Papa F (2018) The mechanism of coupling between oxido-reduction and proton translocation in respiratory chain enzymes. Biol Rev Camb Philos Soc 93:322–349PubMedGoogle Scholar
  128. Parthasarathy L, Vadnal RE, Parthasarathy R, Devi CS (1994) Biochemical and molecular properties of lithium-sensitive myo-inositol monophosphatase. Life Sci 54:1127–1142PubMedGoogle Scholar
  129. Partono S, Lewin AS (1991) The rate and specificity of a group I ribozyme are inversely affected by choice of monovalent salt. Nucleic Acids Res 19:605–609PubMedPubMedCentralGoogle Scholar
  130. Patching SG (2018) Recent developments in nucleobase cation symporter-1 (NCS1) family transport proteins from bacteria, archaea, fungi and plants. J Biosci 43:797–815PubMedGoogle Scholar
  131. Patel S, Yenush L, Rodriguez PL, Serrano R, Blundell TL (2002) Crystal structure of an enzyme displaying both inositol-polyphosphate-1-phosphatase and 3′-phosphoadenosine-5′-phosphate phosphatase activities: a novel target of lithium therapy. J Mol Biol 315:677–685PubMedGoogle Scholar
  132. Perez-Arellano I, Spinola-Amilibia M, Bravo J (2013) Human Drg1 is a potassium-dependent GTPase enhanced by Lerepo4. FEBS J 280:3647–3657PubMedGoogle Scholar
  133. Pinhassi J, DeLong EF, Beja O, Gonzalez JM, Pedros-Alió C (2016) Marine bacterial and archaeal ion-pumping rhodopsins: genetic diversity, physiology, and ecology. Microbiol Mol Biol Rev 80:929–954PubMedPubMedCentralGoogle Scholar
  134. Pivovarov AS, Calahorro F, Walker RJ (2018) Na+/K+-pump and neurotransmitter membrane receptors. Invert Neurosci 19:1PubMedPubMedCentralGoogle Scholar
  135. Posson DJ, Thompson AN, McCoy JG, Nimigean CM (2013) Molecular interactions involved in proton-dependent gating in KcsA potassium channels. J Gen Physiol 142:613–624PubMedPubMedCentralGoogle Scholar
  136. Powell BS, Court DL, Inada T, Nakamura Y, Michotey V, Cui X, Reizer A, Saier MH Jr, Reizer J (1995) Novel proteins of the phosphotransferase system encoded within the rpoN operon of Escherichia coli. Enzyme IIANtr affects growth on organic nitrogen and the conditional lethality of an erats mutant. J Biol Chem 270:4822–4839PubMedGoogle Scholar
  137. Prado S, Villarroya M, Medina M, Armengod ME (2013) The tRNA-modifying function of MnmE is controlled by post-hydrolysis steps of its GTPase cycle. Nucleic Acids Res 41:6190–6208PubMedPubMedCentralGoogle Scholar
  138. Prochaska JX, Howk JC, Wolfe AM (2003) The elemental abundance pattern in a galaxy at z = 2.626. Nature 423:57–59PubMedGoogle Scholar
  139. Rafay A, Majumdar S, Prakash B (2012) Exploring potassium-dependent GTP hydrolysis in TEES family GTPases. FEBS Open Bio 2:173–177PubMedPubMedCentralGoogle Scholar
  140. Randich AM, Cuello LG, Wanderling SS, Perozo E (2014) Biochemical and structural analysis of the hyperpolarization-activated K+ channel MVP. Biochemistry 53:1627–1636PubMedPubMedCentralGoogle Scholar
  141. Razi A, Davis JH, Hao Y, Jahagirdar D, Thurlow B, Basu K, Jain N, Gomez-Blanco J, Britton RA, Vargas J, Guarne A, Woodson SA, Williamson JR, Ortega J (2019) Role of Era in assembly and homeostasis of the ribosomal small subunit. Nucleic Acids Res.  https://doi.org/10.1101/525360 CrossRefPubMedPubMedCentralGoogle Scholar
  142. Renart ML, Montoya E, Giudici AM, Poveda JA, Fernandez AM, Morales A, Gonzalez-Ros JM (2017) Selective exclusion and selective binding both contribute to ion selectivity in KcsA, a model potassium channel. J Biol Chem 292:15552–15560PubMedPubMedCentralGoogle Scholar
  143. Rhoads DB, Waters FB, Epstein W (1976) Cation transport in Escherichia coli. VIII. Potassium transport mutants. J Gen Physiol 67:325–341PubMedGoogle Scholar
  144. Rimmer PB, Shorttle O (2019) Origin of life’s building blocks in carbon- and nitrogen-rich surface hydrothermal vents. Life 9:12PubMedCentralGoogle Scholar
  145. Rocha R, Teixeira-Duarte CM, Jorge JMP, Morais-Cabral JH (2019) Characterization of the molecular properties of KtrC, a second RCK domain that regulates a Ktr channel in Bacillus subtilis. J Struct Biol 205:34–43PubMedGoogle Scholar
  146. Roussel G, Lindner E, White SH (2019) Stabilization of SecA ATPase by the primary cytoplasmic salt of Escherichia coli. Protein Sci 28:984–989PubMedGoogle Scholar
  147. Roux B (2017) Ion channels and ion selectivity. Essays Biochem 61:201–209PubMedPubMedCentralGoogle Scholar
  148. Rozov A, Khusainov I, El Omari K, Duman R, Mykhaylyk V, Yusupov M, Westhof E, Wagner A, Yusupova G (2019) Importance of potassium ions for ribosome structure and function revealed by long-wavelength X-ray diffraction. Nat Commun 10:2519PubMedPubMedCentralGoogle Scholar
  149. Rubey WW (1951) Geologic history of sea water: an attempt to state the problem. GSA Bull 62:1111–1148Google Scholar
  150. Sato Y, Nanatani K, Hamamoto S, Shimizu M, Takahashi M, Tabuchi-Kobayashi M, Mizutani A, Schroeder JI, Souma S, Uozumi N (2014) Defining membrane spanning domains and crucial membrane-localized acidic amino acid residues for K+ transport of a Kup/HAK/KT-type Escherichia coli potassium transporter. J Biochem 155:315–323PubMedGoogle Scholar
  151. Saxena SC, Salvi P, Kaur H, Verma P, Petla BP, Rao V, Kamble N, Majee M (2013) Differentially expressed myo-inositol monophosphatase gene (CaIMP) in chickpea (Cicer arietinum L.) encodes a lithium-sensitive phosphatase enzyme with broad substrate specificity and improves seed germination and seedling growth under abiotic stresses. J Exp Bot 64:5623–5639PubMedPubMedCentralGoogle Scholar
  152. Schramke H, Laermann V, Tegetmeyer HE, Brachmann A, Jung K, Altendorf K (2017) Revisiting regulation of potassium homeostasis in Escherichia coli: the connection to phosphate limitation. MicrobiologyOpen 6:e00438PubMedCentralGoogle Scholar
  153. Schulz S, Iglesias-Cans M, Krah A, Yildiz O, Leone V, Matthies D, Cook GM, Faraldo-Gomez JD, Meier T (2013) A new type of Na+-driven ATP synthase membrane rotor with a two-carboxylate ion-coupling motif. PLoS Biol 11:e1001596PubMedPubMedCentralGoogle Scholar
  154. Sekowska A, Kung HF, Danchin A (2000) Sulfur metabolism in Escherichia coli and related bacteria: facts and fiction. J Mol Microbiol Biotechnol 2:145–177PubMedGoogle Scholar
  155. Shabala S (2017) Signalling by potassium: another second messenger to add to the list? J Exp Bot 68:4003–4007PubMedPubMedCentralGoogle Scholar
  156. Shalaeva DN, Cherepanov DA, Galperin MY, Golovin AV, Mulkidjanian AY (2018) Evolution of cation binding in the active sites of P-loop nucleoside triphosphatases in relation to the basic catalytic mechanism. Elife 7:e37373PubMedPubMedCentralGoogle Scholar
  157. Shannon R (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767Google Scholar
  158. Sheehan W (1976) A periodic chart. Chemistry 49:17–18Google Scholar
  159. Shiman R, Draper DE (2000) Stabilization of RNA tertiary structure by monovalent cations. J Mol Biol 302:79–91PubMedGoogle Scholar
  160. Shin SM, Song SH, Lee JW, Kwak MK, Kang SO (2017) Methylglyoxal synthase regulates cell elongation via alterations of cellular methylglyoxal and spermidine content in Bacillus subtilis. Int J Biochem Cell Biol 91:14–28PubMedGoogle Scholar
  161. Shin M, Mey AR, Payne SM (2019) Vibrio cholerae FeoB contains a dual nucleotide-specific NTPase domain essential for ferrous iron uptake. Proc Natl Acad Sci USA 116:4599–4604PubMedGoogle Scholar
  162. Singh G, Verma R, Wagle S, Gadre SR (2017) Explicit hydration of ammonium ion by correlated methods employing molecular tailoring approach. Mol Phys 115:2708–2720Google Scholar
  163. Smathers CM, Robart AR (2019) The mechanism of splicing as told by group II introns: ancestors of the spliceosome. Biochim Biophys Acta Gene Regul Mech (in press)Google Scholar
  164. Spiegelberg BD, De la Cruz J, Law TH, York JD (2005) Alteration of lithium pharmacology through manipulation of phosphoadenosine phosphate metabolism. J Biol Chem 280:5400–5405PubMedGoogle Scholar
  165. Stahley MR, Adams PL, Wang J, Strobel SA (2007) Structural metals in the group I intron: a ribozyme with a multiple metal ion core. J Mol Biol 372:89–102PubMedPubMedCentralGoogle Scholar
  166. Stock C, Hielkema L, Tascon I, Wunnicke D, Oostergetel GT, Azkargorta M, Paulino C, Hanelt I (2018) Cryo-EM structures of KdpFABC suggest a K+ transport mechanism via two inter-subunit half-channels. Nat Commun 9:4971PubMedPubMedCentralGoogle Scholar
  167. Sun J, Jeffryes JG, Henry CS, Bruner SD, Hanson AD (2017) Metabolite damage and repair in metabolic engineering design. Metab Eng 44:150–159PubMedGoogle Scholar
  168. Svrckova M, Zatloukalova M, Dvorakova P, Coufalova D, Novak D, Hernychova L, Vacek J (2017) Na+/K+-ATPase interaction with methylglyoxal as reactive metabolic side product. Free Radic Biol Med 108:146–154PubMedGoogle Scholar
  169. Szollosi A, Vieira-Pires RS, Teixeira-Duarte CM, Rocha R, Morais-Cabral JH (2016) Dissecting the molecular mechanism of nucleotide-dependent activation of the KtrAB K+ transporter. PLoS Biol 14:e1002356PubMedPubMedCentralGoogle Scholar
  170. Tansel B (2012) Significance of thermodynamic and physical characteristics on permeation of ions during membrane separation: hydrated radius, hydration free energy and viscous effects. Sep Purif Technol 86:119–126Google Scholar
  171. Toledano E, Ogryzko V, Danchin A, Ladant D, Mechold U (2012) 3′-5′ Phosphoadenosine phosphate is an inhibitor of PARP-1 and a potential mediator of the lithium-dependent inhibition of PARP-1 in vivo. Biochem J 443:485–490PubMedPubMedCentralGoogle Scholar
  172. Tomar SK, Kumar P, Prakash B (2011) Deciphering the catalytic machinery in a universally conserved ribosome binding ATPase YchF. Biochem Biophys Res Commun 408:459–464PubMedGoogle Scholar
  173. Varma S, Sabo D, Rempe SB (2008) K+/Na+ selectivity in K channels and valinomycin: over-coordination versus cavity-size constraints. J Mol Biol 376:13–22PubMedGoogle Scholar
  174. Vasak M, Schnabl J (2016) Sodium and potassium ions in proteins and enzyme catalysis. Met Ions Life Sci 16:259–290PubMedGoogle Scholar
  175. Verstraeten N, Fauvart M, Versees W, Michiels J (2011) The universally conserved prokaryotic GTPases. Microbiol Mol Biol Rev 75:507–542PubMedPubMedCentralGoogle Scholar
  176. Viitanen PV, Lubben TH, Reed J, Goloubinoff P, O’Keefe DP, Lorimer GH (1990) Chaperonin-facilitated refolding of ribulosebisphosphate carboxylase and ATP hydrolysis by chaperonin 60 (groEL) are K+ dependent. Biochemistry 29:5665–5671PubMedGoogle Scholar
  177. Vistoli G, De Maddis D, Cipak A, Zarkovic N, Carini M, Aldini G (2013) Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation. Free Radic Res 47(Suppl 1):3–27PubMedGoogle Scholar
  178. Voigt J, Sander G, Nagel K, Parmeggiani A (1974) Effect of NH4 + and K+ on the activity of the ribosomal subunits in the EF-G- and EF-T-dependent GTR hydrolysis. Biochem Biophys Res Commun 57:1279–1286PubMedGoogle Scholar
  179. Wang Y, Wu WH (2013) Potassium transport and signaling in higher plants. Annu Rev Plant Biol 64:451–476PubMedGoogle Scholar
  180. Wang Y, Hall LM, Kujawa M, Li H, Zhang X, O’Meara M, Ichinose T, Wang JM (2019) Methylglyoxal triggers human aortic endothelial cell dysfunction via modulation of the KATP/MAPK pathway. Am J Physiol Cell Physiol 317:C68–C81PubMedGoogle Scholar
  181. Weiner ID, Verlander JW (2010) Role of NH3 and NH4 + transporters in renal acid-base transport. Am J Physiol Renal Physiol 300:F11–F23PubMedPubMedCentralGoogle Scholar
  182. Welchen E, Schmitz J, Fuchs P, Garcia L, Wagner S, Wienstroer J, Schertl P, Braun HP, Schwarzlander M, Gonzalez DH, Maurino VG (2016) d-lactate dehydrogenase links methylglyoxal degradation and electron transport through cytochrome c. Plant Physiol 172:901–912PubMedPubMedCentralGoogle Scholar
  183. Westheimer FH (1987) Why nature chose phosphates. Science 235:1173–1178PubMedGoogle Scholar
  184. Wheatley RW, Juers DH, Lev BB, Huber RE, Noskov SY (2015) Elucidating factors important for monovalent cation selectivity in enzymes: E. coli  β-galactosidase as a model. Phys Chem Chem Phys 17:10899–10909PubMedGoogle Scholar
  185. Wilbanks SM, McKay DB (1995) How potassium affects the activity of the molecular chaperone Hsc70. II. Potassium binds specifically in the ATPase active site. J Biol Chem 270:2251–2257PubMedGoogle Scholar
  186. Wolf S, Pfluger-Grau K, Kremling A (2015) Modeling the interplay of Pseudomonas putida EIIA with the potassium transporter KdpFABC. J Mol Microbiol Biotechnol 25:178–194PubMedGoogle Scholar
  187. Wyllie S, Fairlamb AH (2011) Methylglyoxal metabolism in trypanosomes and leishmania. Semin Cell Dev Biol 22:271–277PubMedPubMedCentralGoogle Scholar
  188. Yang Y, Li S, Konduru AS, Zhang S, Trower TC, Shi W, Cui N, Yu L, Wang Y, Zhu D, Jiang C (2012) Prolonged exposure to methylglyoxal causes disruption of vascular KATP channel by mRNA instability. Am J Physiol Cell Physiol 303:C1045–C1054PubMedPubMedCentralGoogle Scholar
  189. Yang RL, Deng CY, Wei JW, He W, Li AN, Qian W (2018) A large-scale mutational analysis of two-component signaling systems of Lonsdalea quercina revealed that KdpD-KdpE regulates bacterial virulence against host poplar trees. Mol Plant Microbe Interact 31:724–736PubMedGoogle Scholar
  190. Yenush L, Belles JM, Lopez-Coronado JM, Gil-Mascarell R, Serrano R, Rodriguez PL (2000) A novel target of lithium therapy. FEBS Lett 467:321–325PubMedGoogle Scholar
  191. Zhang C, Li H, Wang J, Zhang B, Wang W, Lin H, Luan S, Gao J, Lan W (2017) The rice high-affinity K+ transporter OsHKT2;4 mediates Mg2+ homeostasis under high-Mg2+ conditions in transgenic Arabidopsis. Front Plant Sci 8:1823PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut Cochin INSERM U1016 – CNRS UMR8104 – Université Paris DescartesParisFrance
  2. 2.Li Ka Shing Faculty of Medicine, School of Biomedical SciencesThe University of Hong KongPok Fu LamHong Kong
  3. 3.The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKgs. LyngbyDenmark

Personalised recommendations