Advertisement

Antimicrobial Resistance in Bacteria: Mechanisms, Evolution, and Persistence

  • Eirini ChristakiEmail author
  • Markella Marcou
  • Andreas Tofarides
Review
  • 232 Downloads

Abstract

In recent years, we have seen antimicrobial resistance rapidly emerge at a global scale and spread from one country to the other faster than previously thought. Superbugs and multidrug-resistant bacteria are endemic in many parts of the world. There is no question that the widespread use, overuse, and misuse of antimicrobials during the last 80 years have been associated with the explosion of antimicrobial resistance. On the other hand, the molecular pathways behind the emergence of antimicrobial resistance in bacteria were present since ancient times. Some of these mechanisms are the ancestors of current resistance determinants. Evidently, there are plenty of putative resistance genes in the environment, however, we cannot yet predict which ones would be able to be expressed as phenotypes in pathogenic bacteria and cause clinical disease. In addition, in the presence of inhibitory and sub-inhibitory concentrations of antibiotics in natural habitats, one could assume that novel resistance mechanisms will arise against antimicrobial compounds. This review presents an overview of antimicrobial resistance mechanisms, and describes how these have evolved and how they continue to emerge. As antimicrobial strategies able to bypass the development of resistance are urgently needed, a better understanding of the critical factors that contribute to the persistence and spread of antimicrobial resistance may yield innovative perspectives on the design of such new therapeutic targets.

Keywords

Antimicrobial resistance Evolution Genomics Antibiotics Persistence 

Notes

Funding

None to declare.

References

  1. Abraham EP, Chain E (1940) An enzyme from bacteria able to destroy penicillin [1]. Nature.  https://doi.org/10.1038/146837a0 CrossRefGoogle Scholar
  2. Aldred KJ, Kerns RJ, Osheroff N (2014) Mechanism of quinolone action and resistance. Biochemistry.  https://doi.org/10.1021/bi5000564 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Allen HK, Moe LA, Rodbumrer J, Gaarder A, Handelsman J (2009) Functional metagenomics reveals diverse Β-lactamases in a remote Alaskan soil. ISME J.  https://doi.org/10.1038/ismej.2008.86 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Andersson DI, Hughes D (2011) Peristence of antibiotic resistance in bacterial populations. FEMS Microbiol Rev 35:901–911CrossRefGoogle Scholar
  5. Andersson DI, Cars O, Runehagen A, Sjolund-Karlsson M, Cars H, Sundqvist M et al (2009) Little evidence for reversibility of trimethoprim resistance after a drastic reduction in trimethoprim use. J Antimicrob Chemother 65(2):350–360.  https://doi.org/10.1093/jac/dkp387 CrossRefPubMedGoogle Scholar
  6. Aroniadis OC, Brandt LJ (2013) Fecal microbiota transplantation: past, present and future. Curr Opin Gastroenterol 29(1):79–84.  https://doi.org/10.1097/MOG.0b013e32835a4b3e CrossRefPubMedGoogle Scholar
  7. Austin M, Mellow M, Tierney WM (2014) Fecal microbiota transplantation in the treatment of clostridium difficile infections. Am J Med.  https://doi.org/10.1016/j.amjmed.2014.02.017 CrossRefPubMedGoogle Scholar
  8. Bahl MI, Hansen LH, Sørensen SJ (2009) Persistence mechanisms of conjugative plasmids. Methods Mol Biol 532:73–102.  https://doi.org/10.1007/978-1-60327-853-9_5 CrossRefPubMedGoogle Scholar
  9. Baker SJ, Payne DJ, Rappuoli R, De Gregorio E (2018) Technologies to address antimicrobial resistance. Proc Natl Acad Sci USA.  https://doi.org/10.1073/pnas.1717160115 CrossRefPubMedGoogle Scholar
  10. Ball PR, Shales SW, Chopra I (1980) Plasmid-mediated tetracycline resistance in escherichia coli involves increased efflux of the antibiotic. Biochem Biophys Res Commun 93(1):74–81.  https://doi.org/10.1016/S0006-291X(80)80247-6 CrossRefPubMedGoogle Scholar
  11. Baltz RH (2006) Marcel faber roundtable: is our antibiotic pipeline unproductive because of starvation, constipation or lack of inspiration? J Ind Microbiol Biotechnol.  https://doi.org/10.1007/s10295-005-0077-9 CrossRefPubMedGoogle Scholar
  12. Barbe V, Vallenet D, Fonknechten N, Kreimeyer A, Oztas S, Labarre L et al (2004) Unique features revealed by the genome sequence of Acinetobacter sp. ADP1, a versatile and naturally transformation competent bacterium. Nucleic Acids Res 1:1.  https://doi.org/10.1093/nar/gkh910 CrossRefGoogle Scholar
  13. Bartoloni A, Pallecchi L, Rodríguez H, Fernandez C, Mantella A, Bartalesi F et al (2009) Antibiotic resistance in a very remote Amazonas community. Int J Antimicrob Agents.  https://doi.org/10.1016/j.ijantimicag.2008.07.029 CrossRefPubMedGoogle Scholar
  14. Bayer AS, Schneider T, Sahl HG (2013) Mechanisms of daptomycin resistance in Staphylococcus aureus: role of the cell membrane and cell wall. Ann N Y Acad Sci 1277(1):139–158.  https://doi.org/10.1111/j.1749-6632.2012.06819.x CrossRefPubMedGoogle Scholar
  15. Benveniste R, Davies J (1973) Aminoglycoside antibiotic-inactivating enzymes in actinomycetes similar to those present in clinical isolates of antibiotic-resistant bacteria. Proc Natl Acad Sci USA 70:2276–2280CrossRefGoogle Scholar
  16. Bhullar K, Waglechner N, Pawlowski A, Koteva K, Banks ED, Johnston MD et al (2012) Antibiotic resistance is prevalent in an isolated cave microbiome. PLoS ONE.  https://doi.org/10.1371/journal.pone.0034953 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Biliński J, Grzesiowski P, Muszyński J, Wróblewska M, Mądry K, Robak K et al (2016) Fecal microbiota transplantation inhibits multidrug-resistant gut pathogens: preliminary report performed in an immunocompromised host. Arch Immunol Ther Exp.  https://doi.org/10.1007/s00005-016-0387-9 CrossRefGoogle Scholar
  18. Borrell S, Teo Y, Giardina F, Streicher EM, Klopper M, Feldmann J et al (2013) Epistasis between antibiotic resistance mutations drives the evolution of extensively drug-resistant tuberculosis. Evol Med Public Health 2013(1):65–74.  https://doi.org/10.1093/emph/eot003 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Boucher Y, Labbate M, Koenig JE, Stokes HW (2007) Integrons: mobilizable platforms that promote genetic diversity in bacteria. Trends Microbiol.  https://doi.org/10.1016/j.tim.2007.05.004 CrossRefPubMedGoogle Scholar
  20. Brockhurst MA, Harrison F, Veening J-W, Harrison E, Blackwell G, Iqbal Z, Maclean C (2019) Assessing evolutionary risks of resistance for new antimicrobial therapies. Nat Ecol Evol.  https://doi.org/10.1038/s41559-019-0854-x CrossRefPubMedGoogle Scholar
  21. Cantón R (2009) Antibiotic resistance genes from the environment: a perspective through newly identified antibiotic resistance mechanisms in the clinical setting. Clin Microbiol Infect.  https://doi.org/10.1111/j.1469-0691.2008.02679.x CrossRefPubMedGoogle Scholar
  22. Carroll AC, Wong A (2018) Plasmid persistence: costs, benefits and the plasmid paradox. Can J Microbiol 64:293–304.  https://doi.org/10.1139/cjm-2017-0609 CrossRefPubMedGoogle Scholar
  23. CDC (2013) Centers for disease control and prevention (CDC). Antibiotic resistance threats in the United States, 2013. https://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf. Current. https://doi.org/CS239559-B
  24. Chambers HF (1999) Penicillin-binding protein-mediated resistance in Pneumococci and Staphylococci. J Infect Dis.  https://doi.org/10.1086/513854 CrossRefPubMedGoogle Scholar
  25. Connell SR, Tracz DM, Nierhaus KH, Taylor DE (2003) Ribosomal protection proteins and their mechanism of Tetracycline resistance. Antimicrob Agents Chemother.  https://doi.org/10.1128/AAC.47.12.3675-3681.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Costelloe C, Metcalfe C, Lovering A, Mant D, Hay AD (2010) Effect of antibiotic prescribing in primary care on antimicrobial resistance in individual patients: systematic review and meta-analysis. BMJ.  https://doi.org/10.1136/bmj.c2096 CrossRefPubMedGoogle Scholar
  27. Courvalin P (2006) Vancomycin resistance in gram-positive cocci. Clin Infect Dis.  https://doi.org/10.1086/491711 CrossRefPubMedGoogle Scholar
  28. D’Costa VM, McGrann KM, Hughes DW, Wright GD (2006) Sampling the antibiotic resistome. Science 311:374–377CrossRefGoogle Scholar
  29. Dahlberg C, Chao L (2003) Amelioration of the cost of conjugative plasmid carriage in Eschericha coli K12. Genetics 165(4 PG-1641–9):1641–1649PubMedPubMedCentralGoogle Scholar
  30. Dalmolin TV, De Lima-Morales D, Barth AL (2018) Plasmid-mediated colistin resistance: what do we know? J Infectiol Mini Rev 1:16–22Google Scholar
  31. Dantas G, Sommer MOA, Oluwasegun RD, Church GM (2008) Bacteria subsisting on antibiotics. Science.  https://doi.org/10.1126/science.1155157 CrossRefPubMedGoogle Scholar
  32. Datta N, Hughes VM (1983) Plasmids of the same Inc groups in enterobacteria before and after the medical use of antibiotics. Nature.  https://doi.org/10.1038/306616a0 CrossRefPubMedGoogle Scholar
  33. Davies J, Davies D (2010) Origins and evolution of antibiotic resistance O. Microbiol Mol Biol Rev.  https://doi.org/10.1128/MMBR.00016-10 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Davies J, Spiegelman GB, Yim G (2006) The world of subinhibitory antibiotic concentrations. Curr Opin Microbiol.  https://doi.org/10.1016/j.mib.2006.08.006 CrossRefPubMedGoogle Scholar
  35. Dcosta VM, King CE, Kalan L, Morar M, Sung WWL, Schwarz C et al (2011) Antibiotic resistance is ancient. Nature.  https://doi.org/10.1038/nature10388 CrossRefGoogle Scholar
  36. Di Luca MC, Sørum V, Starikova I, Kloos J, Hülter N, Naseer U et al (2017) Low biological cost of carbapenemase-encoding plasmids following transfer from Klebsiella pneumoniae to Escherichia coli. J Antimicrob Chemother 72(1):85–89.  https://doi.org/10.1093/jac/dkw350 CrossRefPubMedGoogle Scholar
  37. Driffield K, Miller K, Bostock JM, O’neill AJ, Chopra I (2008) Increased mutability of Pseudomonas aeruginosa in biofilms. J Antimicrob Chemother.  https://doi.org/10.1093/jac/dkn044 CrossRefPubMedGoogle Scholar
  38. Eliopoulos GM, Huovinen P (2001) Resistance to trimethoprim-sulfamethoxazole. Clin Infect Dis 32(11):1608–1614.  https://doi.org/10.1086/320532 CrossRefGoogle Scholar
  39. Enne VI, Livermore DM, Stephens P, Hall LMC (2001) Persistence of sulphonamide resistance in Escherichia coli in the UK despite national prescribing restriction. Lancet 357(9265):1325–1328.  https://doi.org/10.1016/S0140-6736(00)04519-0 CrossRefPubMedGoogle Scholar
  40. Enne VI, Bennett PM, Livermore DM, Hall LMC (2004) Enhancement of host fitness by the sul2-coding plasmid p9123 in the absence of selective pressure. J Antimicrob Chemother 53(6):958–963.  https://doi.org/10.1093/jac/dkh217 CrossRefPubMedGoogle Scholar
  41. Enne VI, Delsol AA, Davis GR, Hayward SL, Roe JM, Bennett PM (2005) Assessment of the fitness impacts on Escherichia of acquisition of antibiotic resistance genes encoded by different types of genetic element. J Antimicrob Chemother 56(3):544–551.  https://doi.org/10.1093/jac/dki255 CrossRefPubMedGoogle Scholar
  42. European Centre for Disease Prevention and Control (2018) Surveillance of antimicrobial resistance in Europe Annual report of the European Antimicrobial Resistance Surveillance Network (EARS-Net) 2017. ECDC: Surveill Rep.  https://doi.org/10.2900/230516 CrossRefGoogle Scholar
  43. Fernández L, Hancock REW (2012) Adaptive and mutational resistance: role of porins and efflux pumps in drug resistance. Clin Microbiol Rev 25(4):661–681.  https://doi.org/10.1128/CMR.00043-12 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Fernández L, Breidenstein EBM, Hancock REW (2011) Creeping baselines and adaptive resistance to antibiotics. Drug Resist Updates 14(1):1–21.  https://doi.org/10.1016/j.drup.2011.01.001 CrossRefGoogle Scholar
  45. Flensburg J, Sköld O (1987) Massive overproduction of dihydrofolate reductase in bacteria as a response to the use of trimethoprim. Eur J Biochem 162(3):473–476.  https://doi.org/10.1111/j.1432-1033.1987.tb10664.x CrossRefPubMedGoogle Scholar
  46. Forsman M, Haggstrom B, Lindgren L, Jaurin B (2009) Molecular analysis of β-lactamases from four species of streptomyces: comparison of amino acid sequences with those of other β-clactamases. J Gen Microbiol.  https://doi.org/10.1099/00221287-136-3-589 CrossRefGoogle Scholar
  47. Gillings MR (2014) Integrons: past, present, and future. Microbiol Mol Biol Rev.  https://doi.org/10.1128/MMBR.00056-13 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Gillings MR, Paulsen IT, Tetu SG (2017) Genomics and the evolution of antibiotic resistance. Ann N Y Acad Sci.  https://doi.org/10.1111/nyas.13268 CrossRefPubMedGoogle Scholar
  49. Gniadkowski M (2008) Evolution of extended-spectrum β-lactamases by mutation. Clin Microbiol Infect.  https://doi.org/10.1111/j.1469-0691.2007.01854.x CrossRefPubMedGoogle Scholar
  50. Goldstein BP (2014) Resistance to rifampicin: a review. J Antibiot.  https://doi.org/10.1038/ja.2014.107 CrossRefPubMedGoogle Scholar
  51. Harbarth S, Balkhy HH, Goossens H, Jarlier V, Kluytmans J, Laxminarayan R et al (2015) Antimicrobial resistance: one world, one fight! Antimicrob Resist Infect Control.  https://doi.org/10.1186/s13756-015-0091-2 CrossRefPubMedCentralGoogle Scholar
  52. Harkins CP, Pichon B, Doumith M, Parkhill J, Westh H, Tomasz A et al (2017) Methicillin-resistant Staphylococcus aureus emerged long before the introduction of methicillin into clinical practice. Genome Biol.  https://doi.org/10.1186/s13059-017-1252-9 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Harrison E, Dytham C, Hall JPJ, Guymer D, Spiers AJ, Paterson S, Brockhurst MA (2016) Rapid compensatory evolution promotes the survival of conjugative plasmids. Mob Genet Elem 6(3):2034–2039CrossRefGoogle Scholar
  54. Hiramatsu K, Ito T, Tsubakishita S, Sasaki T, Takeuchi F, Morimoto Y et al (2013) Genomic basis for methicillin resistance in Staphylococcus aureus. Infect Chemother.  https://doi.org/10.3947/ic.2013.45.2.117 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Holmes AH, Moore LSP, Sundsfjord A, Steinbakk M, Regmi S, Karkey A et al (2016) Understanding the mechanisms and drivers of antimicrobial resistance. The Lancet.  https://doi.org/10.1016/S0140-6736(15)00473-0 CrossRefPubMedGoogle Scholar
  56. Howden BP, Davies JK, Johnson PDR, Stinear TP, Grayson ML (2010) Reduced vancomycin susceptibility in Staphylococcus aureus, including vancomycin-intermediate and heterogeneous vancomycin-intermediate strains: resistance mechanisms, laboratory detection, and clinical implications. Clin Microbiol Rev.  https://doi.org/10.1128/CMR.00042-09 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Jacoby GA (2009) AmpC β-Lactamases. Clin Microbiol Rev.  https://doi.org/10.1128/CMR.00036-08 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Jacoby GA, Strahilevitz J, Hooper D (2014) Plasmid-mediated quinolone resistance. NIH Public Access Microbiol Spectr 2(2):1–15Google Scholar
  59. Joon-Hee Lee (2019) Perspectives towards antibiotic resistance: from molecules to population. J Microbiol 57(3):181–184CrossRefGoogle Scholar
  60. Jouhten H, Mattila E, Arkkila P, Satokari R (2016) Reduction of antibiotic resistance genes in intestinal microbiota of patients with recurrent clostridium difficile infection after fecal microbiota transplantation. Clin Infect Dis 63(5):710–711CrossRefGoogle Scholar
  61. Kehrenberg C, Schwarz S, Jacobsen L, Hansen LH, Vester B (2005) A new mechanism for chloramphenicol, florfenicol and clindamycin resistance: methylation of 23S ribosomal RNA at A2503. Mol Microbiol 57(4):1064–1073.  https://doi.org/10.1111/j.1365-2958.2005.04754.x CrossRefPubMedGoogle Scholar
  62. Keith P (2005) Efflux-mediated antimicrobial resistance. J Antimicrob Chemother 56:20–51CrossRefGoogle Scholar
  63. Knothe H, Shah P, Krcmery V, Antal M, Mitsuhashi S (1983) Transferable resistance to cefotaxime, cefoxitin, cefamandole and cefuroxime in clinical isolates of Klebsiella pneumoniae and Serratia marcescens. Infection 11(6):315–317.  https://doi.org/10.1007/BF01641355 CrossRefPubMedGoogle Scholar
  64. Lakin SM, Dean C, Noyes NR, Dettenwanger A, Ross AS, Doster E et al (2017) MEGARes: an antimicrobial resistance database for high throughput sequencing. Nucleic Acids Res.  https://doi.org/10.1093/nar/gkw1009 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Leclercq R (2002) Mechanisms of resistance to macrolides and lincosamides: nature of the resistance elements and their clinical implications. Clin Infect Dis 34(4):482–492.  https://doi.org/10.1086/324626 CrossRefPubMedGoogle Scholar
  66. Levin BR, Perrot V, Walker N (2000) Compensatory mutations, antibiotic resistance and the population genetics of adaptive evolution in bacteria. Genetics 154(3):985–997.  https://doi.org/10.1534/genetics.110.124628 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Levine DP (2005) Vancomycin: a history. Clin Infect Dis.  https://doi.org/10.1086/491709 CrossRefPubMedGoogle Scholar
  68. Levin-Reisman I, Ronin I, Gefen O, Braniss I, Shoresh N, Balaban NQ (2017) Antibiotic tolerance facilitates the evolution of resistance. Science.  https://doi.org/10.1126/science.aaj2191 CrossRefPubMedGoogle Scholar
  69. Levin-Reisman I, Brauner A, Ronin I, Balaban NQ (2019) Epistasis between antibiotic tolerance, persistence, and resistance mutations. Proc Natl Acad Sci USA 116(29):14734–14739.  https://doi.org/10.1073/pnas.1906169116 CrossRefPubMedGoogle Scholar
  70. Liebert CA, Hall RM, Summers AO (1999) Transposon Tn21, flagship of the floating genome. Microbiol Mol Biol Rev 63:507–522PubMedPubMedCentralGoogle Scholar
  71. Lili LN, Britton NF, Feil EJ (2007) The persistence of parasitic plasmids. Genetics 177(1):399–405.  https://doi.org/10.1534/genetics.107.077420 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J et al (2016) Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis.  https://doi.org/10.1016/S1473-3099(15)00424-7 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Livermore DM, Canton R, Gniadkowski M, Nordmann P, Rossolini GM, Arlet G et al (2007) CTX-M: changing the face of ESBLs in Europe. J Antimicrob Chemother 59:165–174CrossRefGoogle Scholar
  74. Luo N, Pereira S, Sahin O, Lin J, Huang S, Michel L, Zhang Q (2005) Enhanced in vivo fitness of fluoroquinolone-resistant Campylobacter jejuni in the absence of antibiotic selection pressure. Proc Natl Acad Sci 102(3):541–546.  https://doi.org/10.1073/pnas.0408966102 CrossRefPubMedGoogle Scholar
  75. Mazel D (2006) Integrons: agents of bacterial evolution. Nat Rev Microbiol.  https://doi.org/10.1038/nrmicro1462 CrossRefPubMedGoogle Scholar
  76. McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA, Baylay AJ et al (2013) The comprehensive antibiotic resistance database. Antimicrob Agents Chemother.  https://doi.org/10.1128/aac.00419-13 CrossRefPubMedPubMedCentralGoogle Scholar
  77. McMurry L, Petrucci RE, Levy SB (2006) Active efflux of tetracycline encoded by four genetically different tetracycline resistance determinants in Escherichia coli. Proc Natl Acad Sci 77(7):3974–3977.  https://doi.org/10.1073/pnas.77.7.3974 CrossRefGoogle Scholar
  78. Miller WR, Munita JM, Arias CA (2014) Mechanisms of antibiotic resistance in enterococci. Expert Rev Anti Infect Ther.  https://doi.org/10.1586/14787210.2014.956092 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Moellering RC (2012) MRSA: the first half century. J Antimicrob Chemother 67(1):4–11.  https://doi.org/10.1093/jac/dkr437 CrossRefPubMedGoogle Scholar
  80. Morales G, Picazo JJ, Baos E, Candel FJ, Arribi A, Peláez B et al (2010) Resistance to linezolid is mediated by the cfr gene in the first report of an outbreak of linezolid-resistant Staphylococcus aureus. Clin Infect Dis 50(6):821–825.  https://doi.org/10.1086/650574 CrossRefPubMedGoogle Scholar
  81. Motta SS, Cluzel P, Aldana M (2015) Adaptive resistance in bacteria requires epigenetic inheritance, genetic noise, and cost of efflux pumps. PLoS ONE 10(3):1–18.  https://doi.org/10.1371/journal.pone.0118464 CrossRefGoogle Scholar
  82. Munita JM, Arias CA (2016) Mechanisms of antibiotic resistance. HHPS Public Access Microbiol Spectr 4(2):1–37.  https://doi.org/10.1128/microbiolspec.VMBF-0016-2015.Mechanisms CrossRefGoogle Scholar
  83. Nikaido H (1989) Outer membrane barrier as a mechanism of antimicrobial resistance. Antimicrob Agents Chemother 33(11):1831–1836CrossRefGoogle Scholar
  84. Nikaido H, Pagès JM (2012) Broad-specificity efflux pumps and their role in multidrug resistance of Gram-negative bacteria. FEMS Microbiol Rev.  https://doi.org/10.1111/j.1574-6976.2011.00290.x CrossRefPubMedGoogle Scholar
  85. Norman A, Hansen LH, Sørensen SJ (2009) Conjugative plasmids: vessels of the communal gene pool. Philos Trans R Soc B.  https://doi.org/10.1098/rstb.2009.0037 CrossRefGoogle Scholar
  86. Nowak R (1994) Hungary sees an improvement in penicillin resistance. Science 264(5157):364.  https://doi.org/10.1126/science.8153619 CrossRefPubMedGoogle Scholar
  87. O’Neill J (2014) Antimicrobial resistance: tackling a crisis for the health and wealth of nations. Rev Antimicrob Resis 20:1–16Google Scholar
  88. Ogawara H, Kawamura N, Kudo T, Suzuki KI, Nakase T (1999) Distribution of β-lactamases in actinomycetes. Antimicrob Agents Chemother 43:3014–3017CrossRefGoogle Scholar
  89. Osei Sekyere J (2018) Genomic insights into nitrofurantoin resistance mechanisms and epidemiology in clinical Enterobacteriaceae. Future Sci OA 4(5):293.  https://doi.org/10.4155/fsoa-2017-0156 CrossRefGoogle Scholar
  90. Pal C, Bengtsson-Palme J, Kristiansson E, Larsson DGJ (2015) Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential. BMC Genom 16(1):964.  https://doi.org/10.1186/s12864-015-2153-5 CrossRefGoogle Scholar
  91. Pallecchi L, Lucchetti C, Bartoloni A, Bartalesi F, Mantella A, Gamboa H et al (2007) Population structure and resistance genes in antibiotic-resistant bacteria from a remote community with minimal antibiotic exposure. Antimicrob Agents Chemother 51(4):1179–1184.  https://doi.org/10.1128/AAC.01101-06 CrossRefPubMedGoogle Scholar
  92. Parmar A, Lakshminarayanan R, Iyer A, Mayandi V, Leng Goh ET, Lloyd DG et al (2018) Design and syntheses of highly potent teixobactin analogues against Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant enterococci (VRE) in vitro and in vivo. J Med Chem.  https://doi.org/10.1021/acs.jmedchem.7b01634 CrossRefPubMedGoogle Scholar
  93. Partridge SR, Tsafnat G, Coiera E, Iredell JR (2009) Gene cassettes and cassette arrays in mobile resistance integrons: review article. FEMS Microbiol Rev.  https://doi.org/10.1111/j.1574-6976.2009.00175.x CrossRefPubMedGoogle Scholar
  94. Paterson DL, Bonomo RA (2005) Extended-spectrum β-lactamases: a clinical update. Clin Microbiol Rev.  https://doi.org/10.1128/CMR.18.4.657-686.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Penders J, Stobberingh EE (2008) Antibiotic resistance of motile aeromonads in indoor catfish and eel farms in the southern part of The Netherlands. Int J Antimicrob Agents.  https://doi.org/10.1016/j.ijantimicag.2007.10.002 CrossRefPubMedGoogle Scholar
  96. Piddock LJV (2006a) Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin Microbiol Rev 19(2):382–402CrossRefGoogle Scholar
  97. Piddock LJV (2006b) Multidrug-resistance efflux pumps—not just for resistance. Nat Rev Microbiol.  https://doi.org/10.1038/nrmicro1464 CrossRefPubMedGoogle Scholar
  98. Portsmouth S, van Veenhuyzen D, Echols R, Machida M, Ferreira JCA, Ariyasu M et al (2018) Cefiderocol versus imipenem-cilastatin for the treatment of complicated urinary tract infections caused by Gram-negative uropathogens: a phase 2, randomised, double-blind, non-inferiority trial. Lancet Infect Dis.  https://doi.org/10.1016/S1473-3099(18)30554-1 CrossRefPubMedGoogle Scholar
  99. Queenan AM, Bush K (2007) Carbapenemases: the versatile β-lactamases. Clin Microbiol Rev.  https://doi.org/10.1128/CMR.00001-07 CrossRefPubMedPubMedCentralGoogle Scholar
  100. Ramirez MS, Tolmasky ME (2010) Aminoglycoside modifying enzymes. Drug Resist Updates 13(6):151–171.  https://doi.org/10.1016/j.drup.2010.08.003 CrossRefGoogle Scholar
  101. Rappuoli R, Bloom DE, Black S (2017) Deploy vaccines to fight superbugs. Nature.  https://doi.org/10.1038/d41586-017-08323-0 CrossRefPubMedGoogle Scholar
  102. Roberts MC (2005) Update on acquired tetracycline resistance genes. FEMS Microbiol Lett.  https://doi.org/10.1016/j.femsle.2005.02.034 CrossRefPubMedGoogle Scholar
  103. Roemhild R, Gokhale CS, Dirksen P, Blake C, Rosenstiel P, Traulsen A et al (2018) Cellular hysteresis as a principle to maximize the efficacy of antibiotic therapy. Proc Natl Acad Sci USA.  https://doi.org/10.1073/pnas.1810004115 CrossRefPubMedGoogle Scholar
  104. Rossolini GM, D’Andrea MM, Mugnaioli C (2008) The spread of CTX-M-type extended-spectrum β-lactamases. Clin Microbiol Infect.  https://doi.org/10.1111/j.1469-0691.2007.01867.x CrossRefPubMedGoogle Scholar
  105. Salimiyan Rizi K, Ghazvini K, Noghondar M Kouhi (2018) Adaptive antibiotic resistance: overview and perspectives. J Infect Dis Ther.  https://doi.org/10.4172/2332-0877.1000363 CrossRefGoogle Scholar
  106. Salyers AA, Amábile-Cuevas CF (1997) MINIREVIEW why are antibiotic resistance genes so resistant to elimination? Antimicrob Agents Chemother 41(11):2321–2325CrossRefGoogle Scholar
  107. Schlüter A, Szczepanowski R, Kurz N, Schneiker S, Krahn I, Pühler A (2007) Erythromycin resistance-conferring plasmid pRSB105, isolated from a sewage treatment plant, harbors a new macrolide resistance determinant, an integron-containing Tn402-like element, and a large region of unknown function. Appl Environ Microbiol.  https://doi.org/10.1128/AEM.02159-06 CrossRefPubMedPubMedCentralGoogle Scholar
  108. Schrag SJ, Perrot V, Levin BR (1997) Adaptation to the fitness costs of antibiotic resistance in Escherichia coli. Proc R Soc B 264(1386):1287–1291.  https://doi.org/10.1098/rspb.1997.0178 CrossRefPubMedGoogle Scholar
  109. Schwarz S, Kehrenberg C, Doublet B, Cloeckaert A (2004) Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol Rev.  https://doi.org/10.1016/j.femsre.2004.04.001 CrossRefPubMedGoogle Scholar
  110. Sengupta S, Chattopadhyay MK, Grossart HP (2013) The multifaceted roles of antibiotics and antibiotic resistance in nature. Front Microbiol.  https://doi.org/10.3389/fmicb.2013.00047 CrossRefPubMedPubMedCentralGoogle Scholar
  111. Sievert DM, Rudrik JT, Patel JB, Wilkins MJ, McDonald LC, Hageman JC (2008) Vancomycin-resistant Staphylococcus aureus in the United States, 2002-2006. Clin Infect Dis 46(5):668–674.  https://doi.org/10.1086/527392 CrossRefPubMedGoogle Scholar
  112. Sommer MOA, Church GM, Dantas G (2010) The human microbiome harbors a diverse reservoir of antibiotic resistance genes. Virulence 1(4):299–303.  https://doi.org/10.4161/viru.1.4.12010 CrossRefPubMedGoogle Scholar
  113. Stokes HW, Hall RM (1989) A novel family of potentially mobile DNA elements encoding site-specific gene-integration functions: integrons. Mol Microbiol.  https://doi.org/10.1111/j.1365-2958.1989.tb00153.x CrossRefPubMedGoogle Scholar
  114. Trindade S, Sousa A, Xavier KB, Dionisio F, Ferreira MG, Gordo I (2009) Positive epistasis drives the acquisition of multidrug resistance. PLoS Genet.  https://doi.org/10.1371/journal.pgen.1000578 CrossRefPubMedPubMedCentralGoogle Scholar
  115. Van Giau V, An SSA, Hulme J (2019) Recent advances in the treatment of pathogenic infections using antibiotics and nano-drug delivery vehicles. Drug Des Dev Ther.  https://doi.org/10.2147/DDDT.S190577 CrossRefGoogle Scholar
  116. Vogwill T, Maclean RC (2015) The genetic basis of the fitness costs of antimicrobial resistance: a meta-analysis approach. Evol Appl 8(3):284–295.  https://doi.org/10.1111/eva.12202 CrossRefPubMedGoogle Scholar
  117. Ward MJ, Gibbons CL, McAdam PR, van Bunnik BAD, Girvan EK, Edwards GF et al (2014) Time-scaled evolutionary analysis of the transmission and antibiotic resistance dynamics of Staphylococcus aureus clonal complex 398. Appl Environ Microbiol.  https://doi.org/10.1128/AEM.01777-14 CrossRefPubMedPubMedCentralGoogle Scholar
  118. Wein T, Hülter NF, Mizrahi I, Dagan T (2019) Emergence of plasmid stability under non-selective conditions maintains antibiotic resistance. Nature Commun.  https://doi.org/10.1038/s41467-019-10600-7 CrossRefGoogle Scholar
  119. Whiteway J, Koziarz P, Veall J, Sandhu N, Kumar P, Hoecher B, Lambert IB (1998) Oxygen-insensitive nitroreductases: analysis of the roles of nfsA and nfsB in development of resistance to 5-nitrofuran derivatives in Escherichia coli. J Bacteriol 180(21):5529–5539PubMedPubMedCentralGoogle Scholar
  120. Wistrand-Yuen E, Knopp M, Hjort K, Koskiniemi S, Berg OG, Andersson DI (2018) Evolution of high-level resistance during low-level antibiotic exposure. Nat Commun 9(1):1–12.  https://doi.org/10.1038/s41467-018-04059-1 CrossRefGoogle Scholar
  121. World Health Organization (2017) Central Asian and Eastern European Surveillance of Antimicrobial Resistance (CAESAR). http://www.euro.who.int/en/health-topics/disease-prevention/antimicrobial-resistance/about-amr/central-asian-and-eastern-european-surveillance-of-antimicrobial-resistance-caesar
  122. Wright GD (2007) The antibiotic resistome: the nexus of chemical and genetic diversity. Nat Rev Microbiol.  https://doi.org/10.1038/nrmicro1614 CrossRefPubMedGoogle Scholar
  123. Zervos MJ, Schaberg DR (1985) Reversal of the in vitro susceptibility of enterococci to trimethoprim-sulfamethoxazole by folinic acid. Antimicrob Agents Chemother 28(3):446–448.  https://doi.org/10.1128/AAC.28.3.446 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Medical SchoolUniversity of CyprusNicosiaCyprus
  2. 2.Microbiology DepartmentArchbishop Makarios III HospitalNicosiaCyprus
  3. 3.Department of MedicineNicosia General HospitalNicosiaCyprus

Personalised recommendations