Journal of Molecular Evolution

, Volume 87, Issue 7–8, pp 209–220 | Cite as

Signatures of Relaxed Selection in the CYP8B1 Gene of Birds and Mammals

  • Sagar Sharad Shinde
  • Lokdeep Teekas
  • Sandhya Sharma
  • Nagarjun VijayEmail author
Original Article


The CYP8B1 gene is known to catalyse reactions that determine the ratio of primary bile salts and the loss of this gene has recently been linked to lack of cholic acid in the bile of naked-mole rats, elephants and manatees using forward genomics approaches. We screened the CYP8B1 gene sequence of more than 200 species and test for relaxation of selection along each terminal branch. The need for retaining a functional copy of the CYP8B1 gene is established by the presence of a conserved open reading frame across most species screened in this study. Interestingly, the dietary switch from bovid to cetacean species is accompanied by an exceptional ten amino acid extension at the C-terminal end through a single base frame-shift deletion. We also verify that the coding frame disrupting mutations previously reported in the elephant are correct, are shared by extinct Elephantimorpha species and coincide with the dietary switch to herbivory. Relaxation of selection in the CYP8B1 gene of the wombat (Vombatus ursinus) also corresponds to drastic change in diet. In summary, our forward genomics-based screen of bird and mammal species identifies recurrent changes in the selection landscape of the CYP8B1 gene concomitant with a change in dietary lipid content.


Frame-shift Comparative genomics Diet change CYP8B1 Relaxed selection 



NV would like to acknowledge funding from IISER Bhopal under Grant # INST/BIO/2017/019. We thank Council of Scientific & Industrial Research for fellowship to SSS, Ministry of Human Resource Development for fellowships to LT and SS. NV has been awarded the Innovative Young Biotechnologist Award 2018 from the Department of Biotechnology and Early Career Research Award from the Department of Science and Technology (both Government of India).

Supplementary material

239_2019_9903_MOESM1_ESM.pptx (3.1 mb)
Supplementary material 1 (PPTX 3186 kb)
239_2019_9903_MOESM2_ESM.docx (130 kb)
Supplementary material 2 (DOCX 131 kb)


  1. Albalat R, Cañestro C (2016) Evolution by gene loss. Nat Rev Genet 17:379–391CrossRefPubMedGoogle Scholar
  2. Anderson CL, Strope CL, Moriyama EN (2011) SuiteMSA: visual tools for multiple sequence alignment comparison and molecular sequence simulation. BMC Bioinform 12:184CrossRefGoogle Scholar
  3. Bonde Y, Eggertsen G, Rudling M (2016) Mice abundant in muricholic bile acids show resistance to dietary induced steatosis, weight gain, and to impaired glucose metabolism. PLoS ONE 11:e0147772CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bornelöv S, Seroussi E, Yosefi S et al (2017) Correspondence on Lovell et al.: identification of chicken genes previously assumed to be evolutionarily lost. Genome Biol 18:112CrossRefPubMedPubMedCentralGoogle Scholar
  5. Chen Y-H, Zhao H (2019) Evolution of digestive enzymes and dietary diversification in birds. PeerJ 7:e6840CrossRefPubMedPubMedCentralGoogle Scholar
  6. Darriba D, Posada D, Kozlov AM et al (2019) ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models. bioRxiv. CrossRefGoogle Scholar
  7. Dunn JG, Foo CK, Belletier NG et al (2013) Ribosome profiling reveals pervasive and regulated stop codon readthrough in drosophila melanogaster. Elife 2:e01179CrossRefPubMedPubMedCentralGoogle Scholar
  8. Edwards HM (1962) Observations on feeding cholic acid to broilers. Poult Sci 41:340–341CrossRefGoogle Scholar
  9. Eggert T, Bakonyi D, Hummel W (2014) Enzymatic routes for the synthesis of ursodeoxycholic acid. J Biotechnol 191:11–21CrossRefPubMedGoogle Scholar
  10. Endo Y, Kamei K-I, Inoue-Murayama M (2018) Genetic signatures of lipid metabolism evolution in Cetacea since the divergence from terrestrial ancestor. J Evol Biol 31:1655–1665CrossRefPubMedGoogle Scholar
  11. Foote AD, Liu Y, Thomas GWC et al (2015) Convergent evolution of the genomes of marine mammals. Nat Genet 47:272–275CrossRefPubMedPubMedCentralGoogle Scholar
  12. Foote AD, Vijay N, Ávila-Arcos MC et al (2016) Genome-culture coevolution promotes rapid divergence of killer whale ecotypes. Nat Commun 7:11693CrossRefPubMedPubMedCentralGoogle Scholar
  13. Groen JN, Capraro D, Morris KV (2014) The emerging role of pseudogene expressed non-coding RNAs in cellular functions. Int J Biochem Cell Biol 54:350–355CrossRefPubMedGoogle Scholar
  14. Hagey LR, Møller PR, Hofmann AF, Krasowski MD (2010a) Diversity of bile salts in fish and amphibians: evolution of a complex biochemical pathway. Physiol Biochem Zool 83:308–321CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hagey LR, Vidal N, Hofmann AF, Krasowski MD (2010b) Evolutionary diversity of bile salts in reptiles and mammals, including analysis of ancient human and extinct giant ground sloth coprolites. BMC Evol Biol 10:133CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hahn MW, Demuth JP, Han S-G (2007a) Accelerated rate of gene gain and loss in primates. Genetics 177:1941–1949CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hahn MW, Han MV, Han S-G (2007b) Gene family evolution across 12 drosophila genomes. PLoS Genet 3:e197CrossRefPubMedPubMedCentralGoogle Scholar
  18. Han MV, Thomas GWC, Lugo-Martinez J, Hahn MW (2013) Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3. Mol Biol Evol 30:1987–1997CrossRefPubMedGoogle Scholar
  19. Hecker N, Sharma V, Hiller M (2017) Transition to an aquatic habitat permitted the repeated loss of the pleiotropic KLK8 gene in mammals. Genome Biol Evol 9:3179–3188PubMedPubMedCentralGoogle Scholar
  20. Hiller M, Schaar BT, Indjeian VB et al (2012) A “forward genomics” approach links genotype to phenotype using independent phenotypic losses among related species. Cell Rep 2:817–823CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hofmann AF, Hagey LR, Krasowski MD (2010) Bile salts of vertebrates: structural variation and possible evolutionary significance. J Lipid Res 51:226–246CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hu J, Ng PC (2012) Predicting the effects of frameshifting indels. Genome Biol 13:R9CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hunt BG, Ometto L, Wurm Y et al (2011) Relaxed selection is a precursor to the evolution of phenotypic plasticity. Proc Natl Acad Sci 108:15936–15941CrossRefPubMedGoogle Scholar
  24. International Chicken Genome Sequencing Consortium (2004) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432:695–716CrossRefGoogle Scholar
  25. Johnson BR (2018) Taxonomically restricted genes are fundamental to biology and evolution. Front Genet 9:407CrossRefPubMedPubMedCentralGoogle Scholar
  26. Jungreis I, Lin MF, Spokony R et al (2011) Evidence of abundant stop codon readthrough in drosophila and other metazoa. Genome Res 21:2096–2113CrossRefPubMedPubMedCentralGoogle Scholar
  27. Jungreis I, Chan CS, Waterhouse RM et al (2016) Evolutionary dynamics of abundant stop codon readthrough. Mol Biol Evol 33:3108–3132CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kaur A, Patankar JV, de Haan W et al (2015) Loss of Cyp8b1 improves glucose homeostasis by increasing GLP-1. Diabetes 64:1168–1179CrossRefPubMedGoogle Scholar
  29. Kosakovsky Pond SL, Frost SDW (2005) Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol 22:1208–1222CrossRefPubMedGoogle Scholar
  30. Kosakovsky Pond SL, Murrell B, Fourment M et al (2011) A random effects branch-site model for detecting episodic diversifying selection. Mol Biol Evol 28:3033–3043CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kozlov AM, Darriba D, Flouri T et al (2019) RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics. CrossRefPubMedGoogle Scholar
  32. Lahti DC, Johnson NA, Ajie BC et al (2009) Relaxed selection in the wild. Trends Ecol Evol 24:487–496CrossRefPubMedGoogle Scholar
  33. Lassmann T, Sonnhammer ELL (2005) Automatic assessment of alignment quality. Nucleic Acids Res 33:7120–7128CrossRefPubMedPubMedCentralGoogle Scholar
  34. Lee YCG, Reinhardt JA (2012) Widespread polymorphism in the positions of stop codons in Drosophila melanogaster. Genome Biol Evol 4:533–549CrossRefPubMedGoogle Scholar
  35. Loughran G, Chou M-Y, Ivanov IP et al (2014) Evidence of efficient stop codon readthrough in four mammalian genes. Nucleic Acids Res 42:8928–8938CrossRefPubMedPubMedCentralGoogle Scholar
  36. MacArthur DG, Tyler-Smith C (2010) Loss-of-function variants in the genomes of healthy humans. Hum Mol Genet 19:R125–R130CrossRefPubMedPubMedCentralGoogle Scholar
  37. MacArthur DG, Balasubramanian S, Frankish A et al (2012) A systematic survey of loss-of-function variants in human protein-coding genes. Science 335:823–828CrossRefPubMedPubMedCentralGoogle Scholar
  38. Meredith RW, Zhang G, Gilbert MTP et al (2014) Evidence for a single loss of mineralized teeth in the common avian ancestor. Science 346:1254390CrossRefPubMedGoogle Scholar
  39. Mugal CF, Wolf JBW, Kaj I (2014) Why time matters: codon evolution and the temporal dynamics of dN/dS. Mol Biol Evol 31:212–231CrossRefPubMedGoogle Scholar
  40. Murrell B, Wertheim JO, Moola S et al (2012) Detecting individual sites subject to episodic diversifying selection. PLoS Genet 8:e1002764CrossRefPubMedPubMedCentralGoogle Scholar
  41. Murrell B, Moola S, Mabona A et al (2013) FUBAR: a fast, unconstrained bayesian AppRoximation for inferring selection. Mol Biol Evol 30:1196–1205CrossRefPubMedPubMedCentralGoogle Scholar
  42. Murrell B, Weaver S, Smith MD et al (2015) Gene-wide identification of episodic selection. Mol Biol Evol 32:1365–1371CrossRefPubMedPubMedCentralGoogle Scholar
  43. Pagel KA, Pejaver V, Lin GN et al (2017) When loss-of-function is loss of function: assessing mutational signatures and impact of loss-of-function genetic variants. Bioinformatics 33:i389–i398CrossRefPubMedPubMedCentralGoogle Scholar
  44. Pond SLK, Frost SDW, Muse SV (2005) HyPhy: hypothesis testing using phylogenies. Bioinformatics 21:676–679CrossRefPubMedGoogle Scholar
  45. Potapova NA, Andrianova MA, Bazykin GA, Kondrashov AS (2018) Are nonsense alleles of Drosophila melanogaster genes under any selection? Genome Biol Evol 10:1012–1018CrossRefPubMedPubMedCentralGoogle Scholar
  46. Rinker DC, Specian NK, Zhao S, Gibbons JG (2019) Polar bear evolution is marked by rapid changes in gene copy number in response to dietary shift. Proc Natl Acad Sci USA 116:13446–13451CrossRefPubMedGoogle Scholar
  47. Saarinen J, Lister AM (2016) Dental mesowear reflects local vegetation and niche separation in Pleistocene proboscideans from Britain. J Quat Sci 31:799–808CrossRefGoogle Scholar
  48. Sela I, Ashkenazy H, Katoh K, Pupko T (2015) GUIDANCE2: accurate detection of unreliable alignment regions accounting for the uncertainty of multiple parameters. Nucleic Acids Res 43:W7–W14CrossRefPubMedPubMedCentralGoogle Scholar
  49. Sharma V, Hiller M (2018) Loss of enzymes in the bile acid synthesis pathway explains differences in bile composition among mammals. Genome Biol Evol 10:3211–3217CrossRefPubMedPubMedCentralGoogle Scholar
  50. Sharma V, Elghafari A, Hiller M (2016) Coding exon-structure aware realigner (CESAR) utilizes genome alignments for accurate comparative gene annotation. Nucleic Acids Res 44:e103CrossRefPubMedPubMedCentralGoogle Scholar
  51. Sharma V, Schwede P, Hiller M (2017) CESAR 2.0 substantially improves speed and accuracy of comparative gene annotation. Bioinformatics 33:3985–3987CrossRefPubMedGoogle Scholar
  52. Sharma V, Hecker N, Roscito JG et al (2018) A genomics approach reveals insights into the importance of gene losses for mammalian adaptations. Nat Commun 9:1215CrossRefPubMedPubMedCentralGoogle Scholar
  53. Sherman RM, Forman J, Antonescu V et al (2019) Assembly of a pan-genome from deep sequencing of 910 humans of African descent. Nat Genet 51:30–35CrossRefPubMedGoogle Scholar
  54. Smith MD, Wertheim JO, Weaver S et al (2015) Less is more: an adaptive branch-site random effects model for efficient detection of episodic diversifying selection. Mol Biol Evol 32:1342–1353CrossRefPubMedPubMedCentralGoogle Scholar
  55. Sulem P, Helgason H, Oddson A et al (2015) Identification of a large set of rare complete human knockouts. Nat Genet 47:448–452CrossRefPubMedGoogle Scholar
  56. Tonin F, Arends IWCE (2018) Latest development in the synthesis of ursodeoxycholic acid (UDCA): a critical review. Beilstein J Org Chem 14:470–483CrossRefPubMedPubMedCentralGoogle Scholar
  57. Vijay N, Park C, Oh J et al (2018) Population genomic analysis reveals contrasting demographic changes of two closely related dolphin species in the last glacial. Mol Biol Evol 35:2026–2033CrossRefPubMedPubMedCentralGoogle Scholar
  58. Wagh K, Bhatia A, Alexe G et al (2012) Lactase persistence and lipid pathway selection in the Maasai. PLoS ONE 7:e44751CrossRefPubMedPubMedCentralGoogle Scholar
  59. Wang Z, Xu S, Du K et al (2016) Evolution of digestive enzymes and RNASE1 provides insights into dietary switch of cetaceans. Mol Biol Evol 33:3144–3157CrossRefPubMedPubMedCentralGoogle Scholar
  60. Warren WC, Hillier LW, Tomlinson C et al (2017) A new chicken genome assembly provides insight into avian genome structure. G3(7):109–117Google Scholar
  61. Wertheim JO, Murrell B, Smith MD et al (2015) RELAX: detecting relaxed selection in a phylogenetic framework. Mol Biol Evol 32:820–832CrossRefPubMedGoogle Scholar
  62. Xia X (2013) DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution. Mol Biol Evol 30:1720–1728CrossRefPubMedPubMedCentralGoogle Scholar
  63. Xia X, Xie Z, Salemi M et al (2003) An index of substitution saturation and its application. Mol Phylogenet Evol 26:1–7CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Sagar Sharad Shinde
    • 1
  • Lokdeep Teekas
    • 1
  • Sandhya Sharma
    • 1
  • Nagarjun Vijay
    • 1
    Email author
  1. 1.Computational Evolutionary Genomics Lab, Department of Biological SciencesIISER BhopalBhauriIndia

Personalised recommendations