Allergy in an Evolutionary Framework

  • Alvaro DaschnerEmail author
  • Juan González Fernández


Respiratory allergy including bronchial asthma and food allergy have gained epidemic character in the last decades in industrialized countries. Much has been learned with respect to the pathophysiology of allergic disease and this has facilitated specific therapies. Allergy is a chronic disease, and being so prevalent claims to search for evolutionary causes of the general susceptibility of humans as a species to react to environmental antigens in a Th2 type immune reaction with IgE production. In an evolutionary analysis of Allergy, necessary questions addressed in this review are “Why does IgE exist or why did IgE evolve?” as well as from the point of view of the mismatch hypothesis, “Why is there an Allergy epidemic?” Recent studies on the possible biological and protective role of IgE against parasites, arthropods, venoms or toxins are challenging the widely accepted definition of allergens as generally innocuous antigens. Combining the immunologic danger model and the toxin hypothesis for allergies, the allergic response could have evolved with an adaptive value and allergens could be proxies for other putative noxious agents. The last decades yielded with vast molecular data of allergens. With available bioinformatics tools, we therefore also describe that evolutionary theory could be applied to prevent allergy, estimate cross-reactivity, to design allergen-specific immunotherapy and to assess the risks of novel foods.


Hygiene hypothesis Toxin hypothesis Allergy IgE Parasites Evolutionary medicine 


  1. Aalberse RC (2000) Structural biology of allergens. J Allergy Clin Immunol 106(2):228–238Google Scholar
  2. Aas K (1978) What makes an allergen an allergen. Allergy 33(1):3–14Google Scholar
  3. Allen JE, Wynn TA (2011) Evolution of Th2 immunity: a rapid repair response to tissue destructive pathogens. PLoS Pathog 7(5):e1002003Google Scholar
  4. Anthony RM, Rutitzky LI, Urban JF, Stadecker MJ, Gause WC (2007) Protective immune mechanisms in helminth infection. Nat Rev Immunol 7(12):975–987Google Scholar
  5. Arlian LG, Platts-Mills TA (2001) The biology of dust mites and the remediation of mite allergens in allergic disease. J Allergy Clin Immunol 107(3 Suppl):S406–413Google Scholar
  6. Ayuso R, Sánchez-Garcia S, Lin J, Fu Z, Ibáñez MD, Carrillo T, Blanco C, Goldis M, Bardina L, Sastre J, Sampson HA (2010) Greater epitope recognition of shrimp allergens by children than by adults suggests that shrimp sensitization decreases with age. J Allergy Clin Immunol 125(6):1286–1293.e1283Google Scholar
  7. Bannon GA (2004) What makes a food protein an allergen? Curr Allergy Asthma Rep 4(1):43–46Google Scholar
  8. Barnes KC, Grant AV, Gao P (2005) A review of the genetic epidemiology of resistance to parasitic disease and atopic asthma: common variants for common phenotypes? Curr Opin Allergy Clin Immunol 5(5):379–385Google Scholar
  9. Breiteneder H, Ebner C (2000) Molecular and biochemical classification of plant-derived food allergens. J Allergy Clin Immunol 106(1 Pt 1):27–36Google Scholar
  10. Burke G, Wikel SK, Spielman A, Telford SR, McKay K, Krause PJ, T.-b. I. S. Group (2005) Hypersensitivity to ticks and Lyme disease risk. Emerg Infect Dis 11(1):36–41Google Scholar
  11. Casadevall A (2012) Fungi and the rise of mammals. PLoS Pathog 8(8):e1002808Google Scholar
  12. Cooper P (2009) Interactions between helminth parasites and allergy. Curr Opin Allergy Clin Immunol 9(1):29–37Google Scholar
  13. Daschner A (2016) An evolutionary-based framework for analyzing mold and dampness-associated symptoms in DMHS. Front Immunol 7:672Google Scholar
  14. Daschner A (2018) Evolutionary plausibility of specific immunotherapy in Allergy. Medicina Evolucionista. Aportaciones pluridisciplinares. A. Daschner, J. Gómez Pérez and M. Trujillo Tiebas. Madrid, Spain, MedEvo. IV: 81–98 (in Spanish) Google Scholar
  15. Daschner A, Cuéllar C (2010) The hidden sense of symptoms: urticaria can be beneficial. Med Hypotheses 75(6):623–626Google Scholar
  16. Daschner A, Rodero M, De Frutos C, Valls A, Cuéllar C (2010) Chronic urticaria is associated with a differential helminth-arthropod-related atopy phenotype. J Dermatol 37(9):780–785Google Scholar
  17. Daschner A, Cuéllar C, Rodero M (2012) The Anisakis allergy debate: does an evolutionary approach help? Trends Parasitol 28(1):9–15Google Scholar
  18. Del Giacco SR, Bakirtas A, Bel E, Custovic A, Diamant Z, Hamelmann E, Heffler E, Kalayci Ö, Saglani S, Sergejeva S, Seys S, Simpson A, Bjermer L (2017) Allergy in severe asthma. Allergy 72(2):207–220Google Scholar
  19. Dunn SE, Vicini JL, Glenn KC, Fleischer DM, Greenhawt MJ (2017) The allergenicity of genetically modified foods from genetically engineered crops: a narrative and systematic review. Ann Allergy Asthma Immunol 119(3):214–222.e213Google Scholar
  20. Fisher AE (2015) An evolutionary perspective on human cross-reactivity to tree nut and seed allergens. Aliso J Syst Evol Bot 33(2):20Google Scholar
  21. Flohr C, Tuyen LN, Lewis S, Quinnell R, Minh TT, Liem HT, Campbell J, Pritchard D, Hien TT, Farrar J, Williams H, Britton J (2006) Poor sanitation and helminth infection protect against skin sensitization in Vietnamese children: a cross-sectional study. J Allergy Clin Immunol 118(6):1305–1311Google Scholar
  22. Fu Z, Lin J (2017) An overview of bioinformatics tools and resources in allergy. Methods Mol Biol 1592:223–245Google Scholar
  23. García-Ortega P, Rovira E, Bartolomé B, Martínez A, Mora E, Richart C (1998) Outbreak of asthma caused by soybean dust allergy. Clinical and immunologic study of the affected patients. Med Clin 110(19):731–735Google Scholar
  24. Gillespie RD, Mbow ML, Titus RG (2000) The immunomodulatory factors of bloodfeeding arthropod saliva. Parasite Immunol 22(7):319–331Google Scholar
  25. González-Fernández J (2017) Nuevos alérgenos de Anisakis simplex: estudios in silico e in vitro. Ph.D., Universidad Complutense de MadridGoogle Scholar
  26. González-Fernández J, Rodero M, Daschner A, Cuéllar C (2014) New insights into the allergenicity of tropomyosin: a bioinformatics approach. Mol Biol Rep 41(10):6509–6517Google Scholar
  27. González-Fernández J, Daschner A, Nieuwenhuizen NE, Lopata AL, Frutos CD, Valls A, Cuéllar C (2015) Haemoglobin, a new major allergen of Anisakis simplex. Int J Parasitol 45(6):399–407Google Scholar
  28. González-Fernández J, Veleiro B, Daschner A, Cuéllar C (2016) Are fish tropomyosins allergens? Ann Allergy Asthma Immunol 116(1):74–76.e75Google Scholar
  29. González-Fernández J, Daschner A, Cuéllar C (2017a) Allergenicity of vertebrate tropomyosins: challenging an immunological dogma. Allergol Immunopathol 45(3):297–304Google Scholar
  30. González-Fernández J, Rivas L, Luque-Ortega JR, Núñez-Ramírez R, Campioli P, Gárate T, Perteguer MJ, Daschner A, Cuéllar C (2017b) Recombinant vs native Anisakis haemoglobin (Ani s 13): its appraisal as a new gold standard for the diagnosis of allergy. Exp Parasitol 181:119–129Google Scholar
  31. González-Fernández J, Alguacil-Guillén M, Cuéllar C, Daschner A (2018) Possible allergenic role of tropomyosin in patients with adverse reactions after fish intake. Immunol Investig 47(4):416–429Google Scholar
  32. Gutierrez DA, Rodewald HR (2013) A sting in the tale of TH2 immunity. Immunity 39(5):803–805Google Scholar
  33. Hanski I, von Hertzen L, Fyhrquist N, Koskinen K, Torppa K, Laatikainen T, Karisola P, Auvinen P, Paulin L, Mäkelä MJ, Vartiainen E, Kosunen TU, Alenius H, Haahtela T (2012) Environmental biodiversity, human microbiota, and allergy are interrelated. Proc Natl Acad Sci USA 109(21):8334–8339Google Scholar
  34. Hardison RC (1996) A brief history of hemoglobins: plant, animal, protist, and bacteria. Proc Natl Acad Sci USA 93(12):5675–5679Google Scholar
  35. Horimukai K, Hayashi K, Tsumura Y, Nomura I, Narita M, Ohya Y, Saito H, Matsumoto K (2015) Total serum IgE level influences oral food challenge tests for IgE-mediated food allergies. Allergy 70(3):334–337Google Scholar
  36. Janeway C (2001) Immunobiology 5: the immune system in health and disease. Garland Pub, New YorkGoogle Scholar
  37. Jenkins RE, Taylor MJ, Gilvary NJ, Bianco AE (1998) Tropomyosin implicated in host protective responses to microfilariae in onchocerciasis. Proc Natl Acad Sci USA 95(13):7550–7555Google Scholar
  38. Jenkins JA, Breiteneder H, Mills EN (2007) Evolutionary distance from human homologs reflects allergenicity of animal food proteins. J Allergy Clin Immunol 120(6):1399–1405Google Scholar
  39. Kahl J, Brattig N, Liebau E (2018) The untapped pharmacopeic potential of helminths. Trends Parasitol 34(10):828–842Google Scholar
  40. Kalic T, Morel-Codreanu F, Radauer C, Ruethers T, Taki AC, Swoboda I, Hilger C, Hoffmann-Sommergruber K, Ollert M, Hafner C, Lopata AL, Morisset M, Breiteneder H, Kuehn A (2019) Patients allergic to fish tolerate ray based on the low allergenicity of its parvalbumin. J Allergy Clin Immunol Pract 7(2):500–508.e511Google Scholar
  41. Karp CL (2010) Guilt by intimate association: what makes an allergen an allergen? J Allergy Clin Immunol 125(5):955–960 (quiz 961–952) Google Scholar
  42. Kim CK, Seol YJ, Lee DJ, Jeong IS, Yoon UH, Lee JY, Lee GS, Park DS (2014) AllergenPro: an integrated database for allergenicity analysis and prediction. Bioinformation 10(6):378–380Google Scholar
  43. Kozłowska R, Bożek A, Jarząb J (2016) Association between cancer and allergies. Allergy Asthma Clin Immunol 12:39Google Scholar
  44. La D, Esquivel-Rodríguez J, Venkatraman V, Li B, Sael L, Ueng S, Ahrendt S, Kihara D (2009) 3D-SURFER: software for high-throughput protein surface comparison and analysis. Bioinformatics 25(21):2843–2844Google Scholar
  45. Ladics GS, Selgrade MK (2009) Identifying food proteins with allergenic potential: evolution of approaches to safety assessment and research to provide additional tools. Regul Toxicol Pharmacol 54(3 Suppl):S2–6Google Scholar
  46. Lappe M (1994) Evolution of asthma. Evolutionary medicine: rethinking the origins of disease. L. M. San Francisco, Sierra Club Books, pp 193–208Google Scholar
  47. Liu R, Holck AL, Yang E, Liu C, Xue W (2013) Tropomyosin from tilapia (Oreochromis mossambicus) as an allergen. Clin Exp Allergy 43(3):365–377Google Scholar
  48. Maizels RM (2016) Parasitic helminth infections and the control of human allergic and autoimmune disorders. Clin Microbiol Infect 22(6):481–486Google Scholar
  49. Marichal T, Starkl P, Reber LL, Kalesnikoff J, Oettgen HC, Tsai M, Metz M, Galli SJ (2013) A beneficial role for immunoglobulin E in host defense against honeybee venom. Immunity 39(5):963–975Google Scholar
  50. Matzinger P (2002) The danger model: a renewed sense of self. Science 296(5566):301–305Google Scholar
  51. McDade TW, Worthman CM (1999) Evolutionary process and the ecology of human immune function. Am J Hum Biol 11(6):705–717Google Scholar
  52. Mecheri S (2012) Contribution of allergic inflammatory response to the pathogenesis of malaria disease. Biochim Biophys Acta 1822(1):49–56Google Scholar
  53. Meiler F, Zumkehr J, Klunker S, Rückert B, Akdis CA, Akdis M (2008) In vivo switch to IL-10-secreting T regulatory cells in high dose allergen exposure. J Exp Med 205(12):2887–2898Google Scholar
  54. Mills EN, Jenkins JA, Alcocer MJ, Shewry PR (2004) Structural, biological, and evolutionary relationships of plant food allergens sensitizing via the gastrointestinal tract. Crit Rev Food Sci Nutr 44(5):379–407Google Scholar
  55. Mukai K, Tsai M, Starkl P, Marichal T, Galli SJ (2016) IgE and mast cells in host defense against parasites and venoms. Semin Immunopathol 38(5):581–603Google Scholar
  56. Müller UR (2005) Bee venom allergy in beekeepers and their family members. Curr Opin Allergy Clin Immunol 5(4):343–347Google Scholar
  57. Nesse RM, Stearns SC (2008) The great opportunity: evolutionary applications to medicine and public health. Evol Appl 1(1):28–48Google Scholar
  58. Okin D, Medzhitov R (2012) Evolution of inflammatory diseases. Curr Biol 22(17):R733–740Google Scholar
  59. Palm NW, Rosenstein RK, Medzhitov R (2012) Allergic host defences. Nature 484(7395):465–472Google Scholar
  60. Pascal M, Perez-Gordo M, Caballero T, Escribese MM, Lopez Longo MN, Luengo O, Manso L, Matheu V, Seoane E, Zamorano M, Labrador M, Mayorga C (2018) Microbiome and allergic diseases. Front Immunol 9:1584Google Scholar
  61. Perezábad L, Reche M, Valbuena T, López-Fandiño R, Molina E, López-Expósito I (2017) Oral food desensitization in children with IgE-Mediated cow’s milk allergy: immunological changes underlying desensitization. Allergy Asthma Immunol Res 9(1):35–42Google Scholar
  62. Platt M, Howell S, Sachdeva R, Dumont C (2014) Allergen cross-reactivity in allergic rhinitis and oral-allergy syndrome: a bioinformatic protein sequence analysis. Int Forum Allergy Rhinol 4(7):559–564Google Scholar
  63. Platts-Mills TA (2012) Allergy in evolution. Chem Immunol Allergy 96:1–6Google Scholar
  64. Platts-Mills TA (2015) The allergy epidemics: 1870–2010. J Allergy Clin Immunol 136(1):3–13Google Scholar
  65. Pradeu T, Vivier E (2016) The discontinuity theory of immunity. Sci Immunol 1:aag0479Google Scholar
  66. Prescott SL (2013) Early-life environmental determinants of allergic diseases and the wider pandemic of inflammatory noncommunicable diseases. J Allergy Clin Immunol 131(1):23–30Google Scholar
  67. Profet M (1991) The function of allergy: immunological defense against toxins. Q Rev Biol 66(1):23–62Google Scholar
  68. Sánchez-Monge R, Blanco C, Perales AD, Collada C, Carrillo T, Aragoncillo C, Salcedo G (2000) Class I chitinases, the panallergens responsible for the latex-fruit syndrome, are induced by ethylene treatment and inactivated by heating. J Allergy Clin Immunol 106(1 Pt 1):190–195Google Scholar
  69. Scheurer S, Toda M, Vieths S (2015) What makes an allergen? Clin Exp Allergy 45(7):1150–1161Google Scholar
  70. Seo M, Kobayashi R, Okamura T, Ikeda K, Satoh M, Inagaki N, Nagai H, Nagase H (2012) Enhancing effects of trichloroethylene and tetrachloroethylene on type I allergic responses in mice. J Toxicol Sci 37(2):439–445Google Scholar
  71. Shahali Y, Dadar M (2018) Plant food allergy: influence of chemicals on plant allergens. Food Chem Toxicol 115:365–374Google Scholar
  72. Sherman PW, Holland E, Sherman JS (2008) Allergies: their role in cancer prevention. Q Rev Biol 83(4):339–362Google Scholar
  73. Silas S, Fitzsimmons CM, Jones FM, Pinot de Moira A, Wawrzyniak J, Tukahebwa EM, Dunne DW (2014) Human IgE responses to different splice variants of Schistosoma mansoni tropomyosin: associations with immunity. Int J Parasitol 44(6):381–390Google Scholar
  74. Soeria-Atmadja D, Onell A, Borgå A (2010) IgE sensitization to fungi mirrors fungal phylogenetic systematics. J Allergy Clin Immunol 125(6):1379–1386.e1371Google Scholar
  75. Stearns SC (2012) Evolutionary medicine: its scope, interest and potential. Proc Biol Sci 279(1746):4305–4321Google Scholar
  76. Stebbings JH (1974) Immediate hypersensitivity: a defense against arthropods? Perspect Biol Med 17(2):233–239Google Scholar
  77. Strachan DP (1989) Hay fever, hygiene, and household size. BMJ 299(6710):1259–1260Google Scholar
  78. Straub RH (2012) Evolutionary medicine and chronic inflammatory state—known and new concepts in pathophysiology. J Mol Med 90(5):523–534Google Scholar
  79. Tsai M, Starkl P, Marichal T, Galli SJ (2015) Testing the ‘toxin hypothesis of allergy’: mast cells, IgE, and innate and acquired immune responses to venoms. Curr Opin Immunol 36:80–87Google Scholar
  80. Urban JJ, Madden K, Svetić A, Cheever A, Trotta P, Gause W, Katona I, Finkelman F (1992) The importance of Th2 cytokines in protective immunity to nematodes. Immunol Rev 127:205–220Google Scholar
  81. van den Biggelaar AH, Rodrigues LC, van Ree R, van der Zee JS, Hoeksma-Kruize YC, Souverijn JH, Missinou MA, Borrmann S, Kremsner PG, Yazdanbakhsh M (2004) Long-term treatment of intestinal helminths increases mite skin-test reactivity in Gabonese schoolchildren. J Infect Dis 189(5):892–900Google Scholar
  82. Vercelli D (2008) Discovering susceptibility genes for asthma and allergy. Nat Rev Immunol 8(3):169–182Google Scholar
  83. Williams GC, Nesse RM (1991) The dawn of Darwinian medicine. Q Rev Biol 66(1):1–22Google Scholar
  84. Wong GW, Zhuo L, Kimata K, Lam BK, Satoh N, Stevens RL (2014) Ancient origin of mast cells. Biochem Biophys Res Commun 451(2):314–318Google Scholar
  85. Yazdanbakhsh M, van den Biggelaar A, Maizels R (2001) Th2 responses without atopy: immunoregulation in chronic helminth infections and reduced allergic disease. Trends Immunol 22(7):372–377Google Scholar
  86. Yazdanbakhsh M, Kremsner PG, van Ree R (2002) Allergy, parasites, and the hygiene hypothesis. Science 296(5567):490–494Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Servicio de AlergiaInstituto de Investigación Sanitaria (IIS)-Hospital Universitario de la PrincesaMadridSpain
  2. 2.Departamento de Parasitología, Facultad de FarmaciaUniversidad ComplutenseMadridSpain

Personalised recommendations