Advertisement

Journal of Molecular Evolution

, Volume 86, Issue 6, pp 340–352 | Cite as

Genes Relocated Between Drosophila Chromosome Arms Evolve Under Relaxed Selective Constraints Relative to Non-Relocated Genes

  • Margaret L. I. Hart
  • Ban L. Vu
  • Quinten Bolden
  • Keith T. Chen
  • Casey L. Oakes
  • Lejla Zoronjic
  • Richard P. Meisel
Original Article

Abstract

Gene duplication creates a second copy of a gene either in tandem to the ancestral locus or dispersed to another chromosomal location. When the ancestral copy of a dispersed duplicate is lost from the genome, it creates the appearance that the gene was “relocated” from the ancestral locus to the derived location. Gene relocations may be as common as canonical dispersed duplications in which both the ancestral and derived copies are retained. Relocated genes appear to be under more selective constraints than the derived copies of canonical duplications, and they are possibly as conserved as single-copy non-relocated genes. To test this hypothesis, we combined comparative genomics, population genetics, gene expression, and functional analyses to assess the selection pressures acting on relocated, duplicated, and non-relocated single-copy genes in Drosophila genomes. We find that relocated genes evolve faster than single-copy non-relocated genes, and there is no evidence that this faster evolution is driven by positive selection. In addition, relocated genes are less essential for viability and male fertility than single-copy non-relocated genes, suggesting that relocated genes evolve fast because of relaxed selective constraints. However, relocated genes evolve slower than the derived copies of canonical dispersed duplicated genes. We therefore conclude that relocated genes are under more selective constraints than canonical duplicates, but are not as conserved as single-copy non-relocated genes.

Keywords

Gene relocation Gene duplication Gene expression RNAi Selective constraints 

Notes

Acknowledgements

We thank members of the Meisel lab at the University of Houston and Andy Clark’s lab at Cornell University for assistance with the RNAi experiments. Mariana Wolfner kindly supplied the bam-Gal4 line, which was originally produced in Margaret Fuller’s laboratory. Erin Kelleher and multiple anonymous reviewers provided valuable feedback that improved this manuscript. We were supported by start up funds from the University of Houston to RPM and a University of Houston Summer Undergraduate Research Fellowship to LZ.

Supplementary material

239_2018_9849_MOESM1_ESM.pdf (928 kb)
Supplementary material 1 (pdf 927 KB)
239_2018_9849_MOESM2_ESM.tsv (3 kb)
Supplementary material 2 (tsv 3 KB)
239_2018_9849_MOESM3_ESM.tsv (6 kb)
Supplementary material 3 (tsv 5 KB)
239_2018_9849_MOESM4_ESM.tsv (3 kb)
Supplementary material 4 (tsv 3 KB)
239_2018_9849_MOESM5_ESM.tsv (5 kb)
Supplementary material 5 (tsv 4 KB)
239_2018_9849_MOESM6_ESM.tsv (33 kb)
Supplementary material 6 (tsv 32 KB)
239_2018_9849_MOESM7_ESM.tsv (27 kb)
Supplementary material 7 (tsv 27 KB)
239_2018_9849_MOESM8_ESM.tsv (374 kb)
Supplementary material 8 (tsv 374 KB)
239_2018_9849_MOESM9_ESM.tsv (575 kb)
Supplementary material 9 (tsv 575 KB)
239_2018_9849_MOESM10_ESM.tsv (13 kb)
Supplementary material 10 (tsv 13 KB)
239_2018_9849_MOESM11_ESM.rwl (11 kb)
Supplementary material 11 (rwl 10 KB)
239_2018_9849_MOESM12_ESM.tsv (8 kb)
Supplementary material 12 (tsv 7 KB)
239_2018_9849_MOESM13_ESM.tsv (3 kb)
Supplementary material 13 (tsv 3 KB)
239_2018_9849_MOESM14_ESM.tsv (460 kb)
Supplementary material 14 (tsv 460 KB)
239_2018_9849_MOESM15_ESM.tsv (1 kb)
Supplementary material 15 (tsv 1 KB)
239_2018_9849_MOESM16_ESM.tsv (1 kb)
Supplementary material 16 (tsv 0 KB)
239_2018_9849_MOESM17_ESM.tsv (1 kb)
Supplementary material 17 (tsv 1 KB)
239_2018_9849_MOESM18_ESM.tsv (1 kb)
Supplementary material 18 (tsv 0 KB)

References

  1. Abascal F, Corpet A, Gurard-Levin ZA, Juan D, Ochsenbein F et al (2013) Subfunctionalization via adaptive evolution influenced by genomic context: the case of histone chaperones ASF1a and ASF1b. Mol Biol Evol 30:1853–1866CrossRefPubMedGoogle Scholar
  2. Adams EM, Wolfner MF (2007) Seminal proteins but not sperm induce morphological changes in the Drosophila melanogaster female reproductive tract during sperm storage. J Insect Physiol 53:319–331CrossRefPubMedGoogle Scholar
  3. Baker RH, Narechania A, Johns PM, Wilkinson GS (2012) Gene duplication, tissue-specific gene expression and sexual conflict in stalk-eyed flies (Diopsidae). Philos Trans R Soc Lond B Biol Sci 367:2357–2375CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bateman JR, Lee AM, Wu C-T (2006) Site-specific transformation of Drosophila via \(\phi\)C31 integrase-mediated cassette exchange. Genetics 173:769–777CrossRefPubMedPubMedCentralGoogle Scholar
  5. Betrán E, Bai Y, Motiwale M (2006) Fast protein evolution and germ line expression of a Drosophila parental gene and its young retroposed paralog. Mol Biol Evol 23:2191–202CrossRefPubMedGoogle Scholar
  6. Betrán E, Long M (2003) Dntf-2r, a young Drosophila retroposed gene with specific male expression under positive Darwinian selection. Genetics 164:977–988PubMedPubMedCentralGoogle Scholar
  7. Betrán E, Thornton K, Long M (2002) Retroposed new genes out of the X in Drosophila. Genome Res 12:1854–1859CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bhutkar A, Russo SM, Smith TF, Gelbart WM (2007) Genome-scale analysis of positionally relocated genes. Genome Res 17:1880–1887CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bikard D, Patel D, Le Mette C, Giorgi V, Camilleri C et al (2009) Divergent evolution of duplicate genes leads to genetic incompatibilities within A. thaliana. Science 323:623–626CrossRefPubMedGoogle Scholar
  10. Chen D, McKearin DM (2003) A discrete transcriptional silencer in the bam gene determines asymmetric division of the Drosophila germline stem cell. Development 130:1159–1170CrossRefPubMedGoogle Scholar
  11. Chen S, Zhang YE, Long M (2010) New genes in Drosophila quickly become essential. Science 330:1682–1685CrossRefPubMedGoogle Scholar
  12. Chintapalli VR, Wang J, Dow JAT (2007) Using FlyAtlas to identify better Drosophila melanogaster models of human disease. Nat Genet 39:715–720CrossRefPubMedGoogle Scholar
  13. Ciomborowska J, Rosikiewicz W, Szklarczyk D, Makalowski W, Makalowska I (2013) ‘Orphan’ retrogenes in the human genome. Mol Biol Evol 30:384–396CrossRefPubMedGoogle Scholar
  14. Conant GC, Wagner A (2003) Asymmetric sequence divergence of duplicate genes. Genome Res 13:2052–2058CrossRefPubMedPubMedCentralGoogle Scholar
  15. Conant GC, Wolfe KH (2008) Turning a hobby into a job: how duplicated genes find new functions. Nat Rev Genet 9:938–950CrossRefPubMedGoogle Scholar
  16. Connallon T, Clark AG (2011) The resolution of sexual antagonism by gene duplication. Genetics 187:919–937CrossRefPubMedPubMedCentralGoogle Scholar
  17. Des Marais DL, Rausher MD (2008) Escape from adaptive conflict after duplication in an anthocyanin pathway gene. Nature 454:762–765CrossRefPubMedGoogle Scholar
  18. Díaz-Castillo C, Ranz JM (2012) Nuclear chromosome dynamics in the Drosophila male germline contribute to the nonrandom genomic distribution of retrogenes. Mol Biol Evol 29:2105–2108CrossRefPubMedGoogle Scholar
  19. Dietzl G, Chen D, Schnorrer F, Su K-C, Barinova Y et al (2007) A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448:151–156CrossRefPubMedGoogle Scholar
  20. Dittmar K A (2010) Evolution after gene duplication. Wiley-Blackwell, HobokenCrossRefGoogle Scholar
  21. Emerson JJ, Kaessmann H, Betran E, Long M (2004) Extensive gene traffic on the mammalian X chromosome. Science 303:537–540CrossRefPubMedGoogle Scholar
  22. Fay JC, Wyckoff GJ, Wu C-I (2001) Positive and negative selection on the human genome. Genetics 158:1227–1234PubMedPubMedCentralGoogle Scholar
  23. Force A, Lynch M, Pickett FB, Amores A, Yan Y-L et al (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151:1531–1545PubMedPubMedCentralGoogle Scholar
  24. Gallach M, Betrán E (2011) Intralocus sexual conflict resolved through gene duplication. Trends Ecol Evol 26:222–228CrossRefPubMedPubMedCentralGoogle Scholar
  25. Green EW, Fedele G, Giorgini F, Kyriacou CP (2014) A Drosophila RNAi collection is subject to dominant phenotypic effects. Nat Methods 11:222–223CrossRefPubMedGoogle Scholar
  26. Gromko MH, Gilbert DG, Richmond RC (1984) Sperm transfer and use in the multiple mating system of Drosophila, In: Smith RL (ed) Sperm competition and the evolution of animal mating systems, Academic Press, New York, pp. 371–426Google Scholar
  27. Groth AC, Fish M, Nusse R, Calos MP (2004) Construction of transgenic Drosophila by using the site-specific integrase from phage \(\phi\)C31. Genetics 166:1775–1782CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hahn MW, Han MV, Han S-G (2007) Gene family evolution across 12 Drosophila genomes. PLoS Genet 3:e197CrossRefPubMedPubMedCentralGoogle Scholar
  29. Han MV, Demuth JP, McGrath CL, Casola C, Hahn MW (2009) Adaptive evolution of young gene duplicates in mammals. Genome Res 19:859–867CrossRefPubMedPubMedCentralGoogle Scholar
  30. Han MV, Hahn MW (2012) Inferring the history of interchromosomal gene transposition in Drosophila using n-dimensional parsimony. Genetics 190:813–825CrossRefPubMedPubMedCentralGoogle Scholar
  31. Harshman LG, Prout T (1994) Sperm displacement without sperm transfer in Drosophila melanogaster. Evolution 48:758–766CrossRefPubMedGoogle Scholar
  32. Hittinger CT, Carroll SB (2007) Gene duplication and the adaptive evolution of a classic genetic switch. Nature 449:677–681CrossRefPubMedGoogle Scholar
  33. Hu TT, Eisen MB, Thornton KR, Andolfatto P (2013) A second-generation assembly of the Drosophila simulans genome provides new insights into patterns of lineage-specific divergence. Genome Res 23:89–98CrossRefPubMedPubMedCentralGoogle Scholar
  34. Hughes AL (1994) The evolution of functionally novel proteins after gene duplication. Proc Biol Sci 256:119–124CrossRefPubMedGoogle Scholar
  35. Innan H, Kondrashov F (2010) The evolution of gene duplications: classifying and distinguishing between models. Nat Rev Genet 11:97–108CrossRefPubMedGoogle Scholar
  36. Kaessmann H, Vinckenbosch N, Long M (2009) RNA-based gene duplication: mechanistic and evolutionary insights. Nat Rev Genet 10:19–31CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kondo S, Vedanayagam J, Mohammed J, Eizadshenass S, Kan L et al (2017) New genes often acquire male-specific functions but rarely become essential in Drosophila. Genes Dev 31:1841–1846CrossRefPubMedPubMedCentralGoogle Scholar
  38. Kondrashov F, Rogozin I, Wolf Y, Koonin E (2002) Selection in the evolution of gene duplications. Genome Biol 3(research0008):1Google Scholar
  39. Larracuente AM, Sackton TB, Greenberg AJ, Wong A, Singh ND et al (2008) Evolution of protein-coding genes in Drosophila. Trends Genet 24:114–123CrossRefPubMedGoogle Scholar
  40. Lee T, Luo L (1999) Mosaic analysis with a repressible neurotechnique cell marker for studies of gene function in neuronal morphogenesis. Neuron 22:451–461CrossRefPubMedGoogle Scholar
  41. Lynch M, Force A (2000) The probability of duplicate gene preservation by subfunctionalization. Genetics 154:459–473PubMedPubMedCentralGoogle Scholar
  42. Mackay TFC, Richards S, Stone EA, Barbadilla A, Ayroles JF et al (2012) The Drosophila melanogaster genetic reference panel. Nature 482:173–178CrossRefPubMedPubMedCentralGoogle Scholar
  43. Marques AC, Dupanloup I, Vinckenbosch N, Reymond A, Kaessmann H (2005) Emergence of young human genes after a burst of retroposition in primates. PLoS Biol 3:e357CrossRefPubMedPubMedCentralGoogle Scholar
  44. Marques-Bonet T, Girirajan S, Eichler EE (2009) The origins and impact of primate segmental duplications. Trends Genet 25:443–454CrossRefPubMedPubMedCentralGoogle Scholar
  45. Masly JP, Jones CD, Noor MAF, Locke J, Orr HA (2006) Gene transposition as a cause of hybrid sterility in Drosophila. Science 313:1448–1450CrossRefPubMedGoogle Scholar
  46. McDonald JH, Kreitman M (1991) Adaptive protein evolution at the Adh locus in Drosophila. Nature 351:652–654CrossRefPubMedGoogle Scholar
  47. Meiklejohn CD, Landeen EL, Cook JM, Kingan SB, Presgraves DC (2011) Sex chromosome-specific regulation in the Drosophila male germline but little evidence for chromosomal dosage compensation or meiotic inactivation. PLoS Biol 9:e1001126CrossRefPubMedPubMedCentralGoogle Scholar
  48. Meisel RP (2011) Towards a more nuanced understanding of the relationship between sex-biased gene expression and rates of protein coding sequence evolution. Mol Biol Evol 28:1893–1900CrossRefPubMedPubMedCentralGoogle Scholar
  49. Meisel RP, Han MV, Hahn MW (2009) A complex suite of forces drives gene traffic from Drosophila X chromosomes. Genome Biol Evol 1:176–188CrossRefPubMedPubMedCentralGoogle Scholar
  50. Meisel RP, Hilldorfer BB, Koch JL, Lockton S, Schaeffer SW (2010) Adaptive evolution of genes duplicated from the Drosophila pseudoobscura neo-X chromosome. Mol Biol Evol 27:1963–1978CrossRefPubMedPubMedCentralGoogle Scholar
  51. Meisel RP, Malone JH, Clark AG (2012) Disentangling the relationship between sex-biased gene expression and X-linkage. Genome Res 22:1255–1265CrossRefPubMedPubMedCentralGoogle Scholar
  52. Metta M, Schlotterer C (2010) Non-random genomic integration - an intrinsic property of retrogenes in Drosophila? BMC Evol Biol 10:114CrossRefPubMedPubMedCentralGoogle Scholar
  53. Moyle LC, Muir CD, Han MV, Hahn MW (2010) The contribution of gene movement to the ‘two rules of speciation’. Evolution 64:1541–1557CrossRefPubMedGoogle Scholar
  54. Muller HJ (1940) Bearings of the ‘Drosophila’ work on systematics. In: Huxley J (ed) The new systematics. Clarendon Press, Oxford, pp 185–268Google Scholar
  55. Ohno S (1970) Evolution by gene duplication. Springer, New YorkCrossRefGoogle Scholar
  56. O’Toole AN, Hurst LD, McLysaght A (2018) Faster evolving primate genes are more likely to duplicate. Mol Biol Evol 35:107–118CrossRefPubMedGoogle Scholar
  57. Parisi M, Nuttall R, Naiman D, Bouffard G, Malley J et al (2003) Paucity of genes on the Drosophila X chromosome showing male-biased expression. Science 299:697–700CrossRefPubMedPubMedCentralGoogle Scholar
  58. Parker GA (1970) Sperm competition and its evolutionary consequences in the insects. Biol Rev 45:525–567CrossRefGoogle Scholar
  59. Potrzebowski L, Vinckenbosch N, Marques AC, Chalmel F, Jégou B et al (2008) Chromosomal gene movements reflect the recent origin and biology of therian sex chromosomes. PLoS Biol 6:e80CrossRefPubMedPubMedCentralGoogle Scholar
  60. Quezada-Diaz JE, Muliyil T, Rio J, Betran E (2010) Drcd-1 related: a positively selected spermatogenesis retrogene in Drosophila. Genetica 138:925–937CrossRefPubMedPubMedCentralGoogle Scholar
  61. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  62. Ràmia M, Librado P, Casillas S, Rozas J, Barbadilla A (2012) PopDrowser: the population Drosophila browser. Bioinformatics 28:595–596CrossRefPubMedGoogle Scholar
  63. Ravi Ram K, Wolfner MF (2007) Seminal influences: Drosophila Acps and the molecular interplay between males and females during reproduction. Intgr Comp Biol 47:427–445CrossRefGoogle Scholar
  64. Rettie E C, Dorus S (2012) Drosophila sperm proteome evolution. Spermatogenesis 2:213–223CrossRefPubMedPubMedCentralGoogle Scholar
  65. Rice WR (1984) Sex chromosomes and the evolution of sexual dimorphism. Evolution 38:735–742CrossRefPubMedGoogle Scholar
  66. Rosso L, Marques AC, Weier M, Lambert N, Lambot M-A et al (2008) Birth and rapid subcellular adaptation of a hominoid-specific CDC14 protein. PLoS Biol 6:e140CrossRefPubMedPubMedCentralGoogle Scholar
  67. Sartain CV, Cui J, Meisel RP, Wolfner MF (2011) The poly(A) polymerase GLD2 is required for spermatogenesis in Drosophila melanogaster. Development 138:1619–1629CrossRefPubMedPubMedCentralGoogle Scholar
  68. Schaeffer SW, Bhutkar A, McAllister BF, Matsuda M, Matzkin LM et al (2008) Polytene chromosomal maps of 11 Drosophila species: the order of genomic scaffolds inferred from genetic and physical maps. Genetics 179:1601–1655CrossRefPubMedPubMedCentralGoogle Scholar
  69. Schrider DR, Stevens K, Cardeno CM, Langley CH, Hahn MW (2011) Genome-wide analysis of retrogene polymorphisms in Drosophila melanogaster. Genome Res 21:2087–2095CrossRefPubMedPubMedCentralGoogle Scholar
  70. Smith NG, Eyre-Walker A (2002) Adaptive protein evolution in Drosophila. Nature 415:1022–1024CrossRefPubMedGoogle Scholar
  71. Spofford JB (1969) Heterosis and the evolution of duplications. Am Nat 103:407–432CrossRefGoogle Scholar
  72. Stanley CE, Kulathinal RJ (2016) flyDIVaS: a comparative genomics resource for Drosophila divergence and selection. G3 6:2355–2363CrossRefPubMedGoogle Scholar
  73. Torgerson DG, Singh RS (2004) Rapid evolution through gene duplication and subfunctionalization of the testes-specific a4 proteasome subunits in Drosophila. Genetics 168:1421–1432CrossRefPubMedPubMedCentralGoogle Scholar
  74. Tracy C, Río J, Motiwale M, Christensen SM, Betrán E (2010) Convergently recruited nuclear transport retrogenes are male biased in expression and evolving under positive selection in Drosophila. Genetics 184:1067–1076CrossRefPubMedPubMedCentralGoogle Scholar
  75. VanKuren NW, Long M (2018) Gene duplicates resolving sexual conflict rapidly evolved essential gametogenesis functions. Nat Ecol Evol 2:705–712CrossRefPubMedGoogle Scholar
  76. Vibranovski MD, Lopes HF, Karr TL, Long M (2009a) Stage-specific expression profiling of Drosophila spermatogenesis suggests that meiotic sex chromosome inactivation drives genomic relocation of testis-expressed genes. PLoS Genet 5:e1000731CrossRefPubMedPubMedCentralGoogle Scholar
  77. Vibranovski MD, Zhang Y, Long M (2009b) General gene movement off the X chromosome in the Drosophila genus. Genome Res 19:897–903CrossRefPubMedPubMedCentralGoogle Scholar
  78. Vinckenbosch N, Dupanloup I, Kaessmann H (2006) Evolutionary fate of retroposed gene copies in the human genome. Proc Natl Acad Sci USA 103:3220–3225CrossRefPubMedGoogle Scholar
  79. Vissers JHA, Manning SA, Kulkarni A, Harvey KF (2016) A Drosophila RNAi library modulates Hippo pathway-dependent tissue growth. Nat Commun 7:10368CrossRefPubMedPubMedCentralGoogle Scholar
  80. Wicker T, Buchmann JP, Keller B (2010) Patching gaps in plant genomes results in gene movement and erosion of colinearity. Genome Res 20:1229–1237CrossRefPubMedPubMedCentralGoogle Scholar
  81. Wu C-I, Xu EY (2003) Sexual antagonism and X inactivation - the SAXI hypothesis. Trends Genet 19:243–247CrossRefPubMedGoogle Scholar
  82. Yanai I, Benjamin H, Shmoish M, Chalifa-Caspi V, Shklar M et al (2005) Genome-wide midrange transcription profiles reveal expression level relationships in human tissue specification. Bioinformatics 21:650–659CrossRefPubMedGoogle Scholar
  83. Yeh S-D, Do T, Chan C, Cordova A, Carranza F et al (2012) Functional evidence that a recently evolved Drosophila sperm-specific gene boosts sperm competition. Proc Natl Acad Sci USA 109:2043–2048CrossRefPubMedGoogle Scholar
  84. Zhang J (2003) Evolution by gene duplication: an update. Trends Ecol Evol 18:292–298CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biology and BiochemistryUniversity of HoustonHoustonUSA
  2. 2.Baylor College of MedicineHoustonUSA
  3. 3.College of PharmacyUniversity of HoustonHoustonUSA
  4. 4.University of Texas Health Science Center at Houston School of NursingHoustonUSA
  5. 5.School of Graduate StudiesRutgers UniversityNew BrunswickUSA
  6. 6.Houston Department of Health and Human ServicesHoustonUSA
  7. 7.University of Texas School of DentistryHoustonUSA

Personalised recommendations