Advertisement

Journal of Molecular Evolution

, Volume 85, Issue 3–4, pp 120–136 | Cite as

Evolutionary Analysis of Pectin Lyases of the Genus Colletotrichum

  • Alicia Lara-Márquez
  • Ken Oyama
  • María G. Zavala-Páramo
  • Maria G. Villa-Rivera
  • Ulises Conejo-Saucedo
  • Horacio Cano-Camacho
Original Article

Abstract

Pectin lyases (PNLs) are important enzymes that are involved in plant cell wall degradation during the infection process. Colletotrichum is a diverse genus of fungi, which allows the study of the evolution of PNLs and their possible role in pathogen–host interactions and lifestyle adaptations. The phylogenetic reconstruction of PNLs from Colletotrichum and analysis of selection pressures showed the formation of protein lineages by groups of species with different selection pressures and specific patterns. The analysis of positive selection at individual sites using different methods allowed for the identification of three codons with evidence of positive selection in the oligosaccharide-binding region and two codons on the antiparallel sheet, which may influence the interaction with the substrate. Seven codons on the surface of the protein, mainly in the peripheral helices of the PNLs, could have an important function in evasion of plant defenses, as has been proposed in other enzymes. According to our results, it is possible that events of genetic duplication occurred in ancestral lines, followed by episodes of genetic diversification and gene loss, probably influenced by differences in the composition of the host cell wall. Additionally, different patterns of evolution in Colletotrichum appear to be molded by a strong purifying selection and positive selection episodes that forged the observed evolutionary patterns, possibly influenced by host interaction or substrate specificity. This work represents a starting point for the study of sites that may be important for evasion of plant defenses and biotechnological purposes.

Keywords

Pectin lyase Colletotrichum sp. Positive selection Molecular evolution 

Notes

Acknowledgements

The authors thank the financial support provided by Secretaría de Educación Pública-Consejo Nacional de Ciencia y Tecnología (SEP-CONACyT), México (project 2012-01-182755 to María G. Zavala-Páramo); Coordinación de la Investigación, Universidad Michoacana de San Nicolás de Hidalgo (project 2014–2015 to Horacio Cano-Camacho); Universidad Nacional Autónoma de México (for post-doctoral fellowship program 2012–14 granted to Alicia Lara-Márquez); and Consejo Nacional de Ciencia y Tecnología, México (for scholarship number 209148 granted to Ulises Conejo-Saucedo and scholarship number 233565 granted to Maria G. Villa-Rivera).

Supplementary material

239_2017_9812_MOESM1_ESM.pdf (6.9 mb)
Supplementary material 1 (PDF 7032 KB)

References

  1. Aguileta G, Refrégier G, Yockteng R et al (2009) Rapidly evolving genes in pathogens: methods for detecting positive selection and examples among fungi, bacteria, viruses and protists. Infect Genet Evol 9:656–670. doi: 10.1016/j.meegid.2009.03.010 CrossRefPubMedGoogle Scholar
  2. Aguileta G, Lengelle J, Chiapello H et al (2012) Genes under positive selection in a model plant pathogenic fungus, Botrytis. Infect Genet Evol 12:987–996. doi: 10.1016/j.meegid.2012.02.012 CrossRefPubMedGoogle Scholar
  3. Alaña A, Gabilondo A, Hernando F (1989) Pectin lyase production by a Penicillium italicum strain. Appl Environ Microbiol 55:1612–1616PubMedPubMedCentralGoogle Scholar
  4. Albersheim P, Anderson AJ (1971) Proteins from plant cell walls inhibit polygalacturonases secreted by plant pathogens. Proc Natl Acad Sci 68:1815–1819CrossRefPubMedPubMedCentralGoogle Scholar
  5. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410. doi: 10.1016/S0022-2836(05)80360-2 CrossRefPubMedGoogle Scholar
  6. Anisimova M, Nielsen R, Yang Z (2003) Effect of recombination on the accuracy of the likelihood method for detecting positive selection at amino acid sites. Genetics 164:1229–1236PubMedPubMedCentralGoogle Scholar
  7. Annis SL, Goodwin PH (1997) Recent advances in the molecular genetics of plant cell wall-degrading enzymes produced by plant pathogenic fungi. Eur J Plant Pathol 103:1–14. doi: 10.1023/A:1008656013255 CrossRefGoogle Scholar
  8. Arnold K, Bordoil L, Kopp J, Schwede T (2005) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201. doi: 10.1093/bioinformatics/bti770 CrossRefPubMedGoogle Scholar
  9. Balestrieri C, Castaldo D, Giovane A et al (1990) A glycoprotein inhibitor of pectin methylesterase in kiwi fruit (Actinidia chinensis). Eur J Biochem 193:183–187CrossRefPubMedGoogle Scholar
  10. Baroncelli R, Sanz-Martín JM, Rech GE et al (2014a) Draft genome sequence of Colletotrichum sublineola, a destructive pathogen of cultivated Sorghum. Genome Announc 2:e00540–e00514. doi: 10.1128/genomeA.00540-14 PubMedPubMedCentralGoogle Scholar
  11. Baroncelli R, Sreenivasaprasad S, Sukno SA et al (2014b) Draft genome sequence of Colletotrichum acutatum sensu lato (Colletotrichum fioriniae). Genome Announc 2:e00112–e00114. doi: 10.1128/genomeA.00112-14 PubMedPubMedCentralGoogle Scholar
  12. Barrus MF (1911) Variation of varieties of beans in their susceptibility to anthracnose. Phytopathology 1:190–195Google Scholar
  13. Bateman A, Coin L, Durbin R et al (2004) The Pfam protein families database. Nucleic Acids Res 32:D138–D141. doi: 10.1093/nar/gkh121 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Bielawski JP, Yang Z (2003) Maximum likelihood methods for detecting adaptive evolution after gene duplication. J Struct Funct Genom 3:201–212CrossRefGoogle Scholar
  15. Bock H, Dongowski G, Gobel H, Krause M (1975) Nachweis der hemmung mikrobieller pektin und pektat lyase durch pftanzeneigene inhibitoren. Nahrung 19:411–416CrossRefGoogle Scholar
  16. Brunner PC, Keller N, McDonald BA (2009) Wheat domestication accelerated evolution and triggered positive selection in the beta-xylosidase enzyme of Mycosphaerella graminicola. PLoS ONE 4:e7884. doi: 10.1371/journal.pone.0007884 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Brunner PC, Torriani SFF, Croll D et al (2013) Coevolution and life cycle specialization of plant cell wall degrading enzymes in a hemibiotrophic pathogen. Mol Biol Evol 30:1337–1347. doi: 10.1093/molbev/mst041 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Bugbee WM (1993) A pectin lyase inhibitor protein from cell walls of sugar beet. Phytopathology 83:63–68CrossRefGoogle Scholar
  19. Cannon PF, Damm U, Johnston PR, Weir BS (2012) Colletotrichum - current status and future directions. Stud Mycol 73:181–213. doi: 10.3114/sim0014 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Cettul E, Rekab D, Locci R, Firrao G (2008) Evolutionary analysis of endopolygalacturonase-encoding genes of Botrytis cinerea. Mol Plant Pathol 9:675–685. doi: 10.1111/j.1364-3703.2008.00492.x CrossRefPubMedGoogle Scholar
  21. Cooper JA (1983) The mechanisms and significance of enzymic degradation of host cell walls by parasites. In: Callow JA (ed) Biochemical plant pathology. Wiley, Chichester, pp 101–137Google Scholar
  22. Cornell MJ, Alam I, Soanes DM et al (2007) Comparative genome analysis across a kingdom of eukaryotic organisms: specialization and diversification in the fungi. Genome Res 17:1809–1822. doi: 10.1101/gr.6531807 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Crouch J, O’Connell R, Gan P et al (2014) The genomics of Colletotrichum. In: Genomics of plant-associated fungi: monocot pathogens. Springer, Berlin, pp 69–102Google Scholar
  24. D’Ovidio R, Raiola A, Capodicasa C et al (2004) Characterization of the complex locus of bean encoding polygalacturonase-inhibiting proteins reveals subfunctionalization for defense against fungi and insects. Plant Physiol 135:2424–2435. doi: 10.1104/pp.104.044644 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Damm U, Woudenberg JHC, Cannon PF, Crous PW (2009) Colletotrichum species with curved conidia from herbaceous hosts. Fungal Divers 39:45–87Google Scholar
  26. De Lorenzo G, D’Ovidio R, Cervone F (2001) The role of polygalacturonase-inhibiting proteins (PGIPs) in defense against pathogenic fungi. Annu Rev Phytopathol 39:313–335. doi: 10.1146/annurev.phyto.39.1.313 CrossRefPubMedGoogle Scholar
  27. Dean R, van Kan JAL, Pretorius ZA et al (2012) The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414–430. doi: 10.1111/j.1364-3703.2011.00783.x CrossRefPubMedGoogle Scholar
  28. Delport W, Poon AFY, Frost SDW, Kosakovsky Pond SL (2010) Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics 26:2455–2457. doi: 10.1093/bioinformatics/btq429 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Demuth JP, Hahn MW (2009) The life and death of gene families. Bioessays 31:29–39. doi: 10.1002/bies.080085 CrossRefPubMedGoogle Scholar
  30. DePristo MA, Weinreich DM, Hartl DL (2005) Missense meanderings in sequence space: a biophysical view of protein evolution. Nat Rev Genet 6:678–687. doi: 10.1038/nrg1672 CrossRefPubMedGoogle Scholar
  31. Dornez E, Croes E, Gebruers K et al (2010) Accumulated evidence substantiates a role for three classes of wheat xylanase inhibitors in plant defense. Crit Rev Plant Sci 29:244–264. doi: 10.1080/07352689.2010.487780 CrossRefGoogle Scholar
  32. Federici L, Caprari C, Mattei B et al (2001) Structural requirements of endopolygalacturonase for the interaction with PGIP (polygalacturonase-inhibiting protein). Proc Natl Acad Sci 98:13425–13430. doi: 10.1073/pnas.231473698 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Federici L, Di Matteo A, Fernandez-Recio J et al (2006) Polygalacturonase inhibiting proteins: players in plant innate immunity? Trends Plant Sci 11:65–70. doi: 10.1016/j.tplants.2005.12.005 CrossRefPubMedGoogle Scholar
  34. Fierens E, Rombouts S, Gebruers K et al (2007) TLXI, a novel type of xylanase inhibitor from wheat (Triticum aestivum) belonging to the thaumatin family. Biochem J 403:583–591. doi: 10.1042/BJ20061291 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Gan P, Ikeda K, Irieda H et al (2013) Comparative genomic and transcriptomic analyses reveal the hemibiotrophic stage shift of Colletotrichum fungi. New Phytol 197:1236–1249. doi: 10.1111/nph.12085 CrossRefPubMedGoogle Scholar
  36. Gan P, Kumakura N, Narusaka M et al (2016) Genus-wide comparative genome analyses of Colletotrichum species reveal specific gene family losses and gains during adaptation to specific infection lifestyles. Genome Biol Evol 8:1467–1481. doi: 10.1093/gbe/evw089 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Gebruers K, Debyser W, Goesaert H et al (2001) Triticum aestivum L. endoxylanase inhibitor (TAXI) consists of two inhibitors, TAXI I and TAXI II, with different specificities. Biochem J 353:239–244CrossRefPubMedPubMedCentralGoogle Scholar
  38. Helder P, Uma M, Martin U et al (2016) PhytoPath: an integrative resource for plant pathogen genomics. Nucleic Acids Res 44:D688–D693. doi: 10.1093/nar/gkv1052 CrossRefGoogle Scholar
  39. Herron SR, Benen J, Scavetta RD et al (2000) Structure and function of pectic enzymes: virulence factors of plant pathogens. Proc Natl Acad Sci 97:8762–8769CrossRefPubMedPubMedCentralGoogle Scholar
  40. Herron SR, Scavetta RD, Garrett M et al (2003) Characterization and implications of Ca2+ binding to pectate lyase C. J Biol Chem 278:12271–12277. doi: 10.1074/jbc.M209306200 CrossRefPubMedGoogle Scholar
  41. Hiruma K, Gerlach N, Sacristán S et al (2016) Root endophyte Colletotrichum tofieldiae confers plant fitness benefits that are phosphate status dependent. Cell 165:464–474. doi: 10.1016/j.cell.2016.02.028 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33-8-27–33-8-28CrossRefGoogle Scholar
  43. Isshiki A, Akimitsu K, Yamamoto M, Yamamoto H (2001) Endopolygalacturonase is essential for citrus black rot caused by Alternaria citri but not brown spot caused by Alternaria alternata. Mol Plant Microbe Interact 14:749–757. doi: 10.1094/MPMI.2001.14.6.749 CrossRefPubMedGoogle Scholar
  44. Kim H, Ahn J-H, Görlach JM et al (2001) Mutational analysis of β-glucanase genes from the plant-pathogenic fungus Cochliobolus carbonum. Mol Plant Microbe Interact 14:1436–1443. doi: 10.1094/MPMI.2001.14.12.1436 CrossRefPubMedGoogle Scholar
  45. Lamb B (2003) Meiotic recombination in fungi: mechanisms and controls of crossing-over and gene conversion. In: Arora DK, Khachatourians GG (eds) Fungal genomics. Elsevier, Amsterdam, pp 15–41CrossRefGoogle Scholar
  46. Leckie F, Mattei B, Capodicasa C et al (1999) The specificity of polygalacturonase-inhibiting protein (PGIP): a single amino acid substitution in the solvent-exposed β-strand/β-turn region of the leucine-rich repeats (LRRs) confers a new recognition capability. EMBO J 18:2352–2363. doi: 10.1093/emboj/18.9.2352 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Lenné JM (2001) Some major plant diseases. In: Plant pathologist’s pocketbook, 3rd edn. CABI, Wallingford, pp 4–18CrossRefGoogle Scholar
  48. Lo Presti L, Lanver D, Schweizer G et al (2015) Fungal effectors and plant susceptibility. Annu Rev Plant Biol 66:513–545. doi: 10.1146/annurev-arplant-043014-114623 CrossRefPubMedGoogle Scholar
  49. Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155CrossRefPubMedGoogle Scholar
  50. MacColl ADC (2011) The ecological causes of evolution. Trends Ecol Evol 26:514–522. doi: 10.1016/j.tree.2011.06.009 CrossRefPubMedGoogle Scholar
  51. Marcelino J, Giordano R, Gouli S et al (2008) Colletotrichum acutatum var. fioriniae (teleomorph: Glomerella acutata var. fioriniae var. nov.) infection of a scale insect. Mycologia 100:353–374CrossRefPubMedGoogle Scholar
  52. Martin U, Alayne C, Rutherford K et al (2017) PHI-base: a new interface and further additions for the multi-species pathogen–host interactions database. Nucl Acids Res 45:D604–D610. doi: 10.1093/nar/gkw1089 CrossRefGoogle Scholar
  53. Mayans O, Scott M, Connerton I et al (1997) Two crystal structures of pectin lyase a from Aspergillus reveal a pH driven conformational change and striking divergence in the substrate-binding clefts of pectin and pectate lyases. Structure 5:677–689CrossRefPubMedGoogle Scholar
  54. Murrell B, Wertheim JO, Moola S et al (2012) Detecting individual sites subject to episodic diversifying selection. PLoS Genet 8:e1002764. doi: 10.1371/journal.pgen.1002764 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Murrell B, Weaver S, Smith MD et al (2015) Gene-wide identification of episodic selection. Mol Biol Evol 32:1365–1371. doi: 10.1093/molbev/msv035 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New YorkGoogle Scholar
  57. Nuss L, Mahé A, Clark AJ et al (1996) Differential accumulation of PGIP (polygalacturonase-inhibiting protein) mRNA in two near-isogenic lines of Phaseolus vulgaris L. upon infection with Colletotrichum lindemuthianum. Physiol Mol Plant Pathol 48:83–89. doi: 10.1006/pmpp.1996.0008 CrossRefGoogle Scholar
  58. O’Connell RJ, Thon MR, Hacquard S et al (2012) Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nat Genet 44:1060–1065. doi: 10.1038/ng.2372 CrossRefPubMedGoogle Scholar
  59. Perfect SE, Hughes HB, O’Connell RJ, Green JR (1999) Colletotrichum: a model genus for studies on pathology and fungal-plant interactions. Fungal Genet Biol 27:186–198. doi: 10.1006/fgbi.1999.1143 CrossRefPubMedGoogle Scholar
  60. Pollet A, Sansen S, Raedschelders G et al (2009) Identification of structural determinants for inhibition strength and specificity of wheat xylanase inhibitors TAXI-IA and TAXI-IIA. FEBS J 276:3916–3927. doi: 10.1111/j.1742-4658.2009.07105.x CrossRefPubMedGoogle Scholar
  61. Pond SK, Pond SK, Muse SV (2005a) Site-to-site variation of synonymous substitution rates. Mol Biol Evol 22:2375–2385. doi: 10.1093/molbev/msi232 CrossRefPubMedGoogle Scholar
  62. Pond SLK, Pond SLK, Frost SDW, Frost SDW (2005b) Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol 22:1208–1222. doi: 10.1093/molbev/msi105 CrossRefGoogle Scholar
  63. Pond SLK, Pond SLK, Frost SDW, Frost SDW (2005c) Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics 21:2531–2533. doi: 10.1093/bioinformatics/bti320 CrossRefPubMedGoogle Scholar
  64. Pond SLK, Frost SDW, Grossman Z et al (2006a) Adaptation to different human populations by HIV-1 revealed by codon-based analyses. PLoS Comp Biol 2:e62. doi: 10.1371/journal.pcbi.0020062 CrossRefGoogle Scholar
  65. Pond SLK, Posada D, Gravenor MB et al (2006b) GARD: a genetic algorithm for recombination detection. Bioinformatics 22:3096–3098. doi: 10.1093/bioinformatics/btl474 CrossRefGoogle Scholar
  66. Pond SLK, Posada D, Gravenor MB et al (2006c) Automated phylogenetic detection of recombination using a genetic algorithm. Mol Biol Evol 23:1891–1901. doi: 10.1093/molbev/msl051 CrossRefGoogle Scholar
  67. Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256. doi: 10.1093/molbev/msn083 CrossRefPubMedGoogle Scholar
  68. Powell AJ, Conant GC, Brown DE et al (2008) Altered patterns of gene duplication and differential gene gain and loss in fungal pathogens. BMC Genom 9:147. doi: 10.1186/1471-2164-9-147 CrossRefGoogle Scholar
  69. Prusky D (1996) Pathogen quiescence in postharvest diseases. Annu Rev Phytopathol 34:413–434. doi: 10.1146/annurev.phyto.34.1.413 CrossRefPubMedGoogle Scholar
  70. Raiola A, Lionetti V, Elmaghraby I et al (2011) Pectin methylesterase is induced in Arabidopsis upon infection and is necessary for a successful colonization by necrotrophic pathogens. Mol Plant Microbe Interact 24:432–440. doi: 10.1094/MPMI-07-10-0157 CrossRefPubMedGoogle Scholar
  71. Robinson O, Dylus D, Dessimoz C (2016) Phylo.io: interactive viewing and comparison of large phylogenetic trees on the web. Mol Biol Evol 33:2163–2166. doi: 10.1093/molbev/msw080 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Romero PA, Arnold FH (2009) Exploring protein fitness landscapes by directed evolution. Nat Rev Mol Cell Biol 10:866–876. doi: 10.1038/nrm2805 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Ronquist F, Teslenko M, van der Mark P et al (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. doi: 10.1093/sysbio/sys029 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725–738. doi: 10.1038/nprot.2010.5 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Sánchez-Torres P, Visser J, Benen JAE (2003) Identification of amino acid residues critical for catalysis and stability in Aspergillus niger family 1 pectin lyase A. Biochem J 370:331–337. doi: 10.1042/BJ20021071 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Shriner D, Nickle DC, Jensen MA, Mullins JI (2003) Potential impact of recombination on sitewise approaches for detecting positive natural selection. Genet Res 81:115–121CrossRefPubMedGoogle Scholar
  77. Silvestro D, Michalak I (2011) raxmlGUI: a graphical front-end for RAxML. Org Diver Evol 12:335–337. doi: 10.1007/s13127-011-0056-0 CrossRefGoogle Scholar
  78. Soanes DM, Alam I, Cornell M et al (2008) Comparative genome analysis of filamentous fungi reveals gene family expansions associated with fungal pathogenesis. PLoS ONE 3:e2300. doi: 10.1371/journal.pone.0002300 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Solovyev V, Kosarev P, Seledsov I, Vorobyev D (2006) Automatic annotation of eukaryotic genes, pseudogenes and promoters. Genome Biol. doi: 10.1186/gb-2006-7-s1-s10 Google Scholar
  80. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. doi: 10.1093/bioinformatics/btu033 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Stanke M, Morgenstern B (2005) AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucl Acids Res 33:W465–W467. doi: 10.1093/nar/gki458 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Tamura K, Stecher G, Peterson D et al (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi: 10.1093/molbev/mst197 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Tokuriki N, Stricher F, Serrano L, Tawfik DS (2008) How protein stability and new functions trade off. PLoS Comp Biol 4:e1000002. doi: 10.1371/journal.pcbi.1000002 CrossRefGoogle Scholar
  84. Vitali J, Schick B, Kester HC et al (1998) The tree-dimensional structure of Aspergillus niger pectin lyase B at 1.7-A resolution. Plant Physiol 116:69–80CrossRefPubMedPubMedCentralGoogle Scholar
  85. Walton J (1994) Deconstructing the cell wall. Plant Physiol 104:1113–1118CrossRefPubMedPubMedCentralGoogle Scholar
  86. Wang Y-T, Lo H-S, Wang P-H (2008) Endophytic fungi from taxus mairei in Taiwan: first report of Colletotrichum gloeosporioides as an endophyte of Taxus mairei. Bot Stud 39:39–43Google Scholar
  87. Wapinski I, Pfeffer A, Friedman N, Regev A (2007) Natural history and evolutionary principles of gene duplication in fungi. Nature 449:54–61. doi: 10.1038/nature06107 CrossRefPubMedGoogle Scholar
  88. Xu B, Yang Z (2013) PAMLX: a graphical user interface for PAML. Mol Biol Evol 30:2723–2724. doi: 10.1093/molbev/mst179 CrossRefPubMedGoogle Scholar
  89. Xu D, Zhang Y (2011) Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophys J 101:2525–2534. doi: 10.1016/j.bpj.2011.10.024 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Yang Z, Nielsen R, Goldman N, Pedersen A-MK (2000) Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155:431–449. doi: 10.1016/S0378-1119(99)00294-2 PubMedPubMedCentralGoogle Scholar
  91. Yang Z, Wong WSW, Nielsen R (2005) Bayes empirical bayes inference of amino acid sites under positive selection. Mol Biol Evol 22:1107–1118. doi: 10.1093/molbev/msi097 CrossRefPubMedGoogle Scholar
  92. Zhao Z, Liu H, Wang C, Xu J-R (2013) Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi. BMC Genom 14:274. doi: 10.1186/1471-2164-14-274 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Alicia Lara-Márquez
    • 1
  • Ken Oyama
    • 1
  • María G. Zavala-Páramo
    • 2
  • Maria G. Villa-Rivera
    • 2
  • Ulises Conejo-Saucedo
    • 2
  • Horacio Cano-Camacho
    • 2
  1. 1.Escuela Nacional de Estudios Superiores (ENES) Unidad MoreliaUniversidad Nacional Autónoma de México (UNAM)MoreliaMéxico
  2. 2.Centro Multidisciplinario de Estudios en Biotecnología, FMVZUniversidad Michoacana de San Nicolás de HidalgoMoreliaMéxico

Personalised recommendations