Skip to main content
Log in

Evolution of GSTD1 in Cactophilic Drosophila

Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

GSTD1 is an insect glutathione S-transferase that has received considerable attention because of its role in detoxification of xenobiotic compounds, specifically pesticides and plant allelochemicals involved in detoxification, or in the use of some substrates as a nutritional source. GSTD1 has been implicated in the adaptation to a new cactus host in Drosophila mojavensis and thus constitutes an interesting candidate to study ecological genetics of adaptation in Drosophila. We conducted population genetic and molecular evolution analyses of the GstD1 gene in the context of association with different cactus hosts (Opuntia sp. vs. Columnar) in nine Drosophila species from the repleta group. We observed strong evidence of selection in GstD1 from D. hexastigma. This species is associated with a diverse set of columnar cacti with very complex chemistries. GstD1 sequences from D. hexastigma show evidence of a recent selective sweep, and positive selection at one residue just outside of the active site of the enzyme. The substitution (Q116T) at the site under selection leads to a conformational change in the enzyme that could have important consequences for substrate binding efficiency. Our results suggest that GSTD1 from D. hexastigma may have evolved improved substrate binding in order to adapt to the diverse chemical environments that this species encounters in the wild.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge

    Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Methodol 57:289–300

    Google Scholar 

  • Betts MJ, Russell RB (2003) Amino acid properties and consequences of substitutions. In: Barnes MR, Gray IC (eds) Bioinformatics for geneticists. Wiley, New York, pp 289–316

    Chapter  Google Scholar 

  • DeLano WL (2002) The PyMOL molecular graphics system. CCP4 NewsLetter Protein Cryst. 40:44–53

    Google Scholar 

  • Fay JC, Wu CI (2000) Hitchhiking under positive Darwinian selection. Genetics 155:1405–1413

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flot JF (2010) SEQPHASE: a web tool for interconverting phase input/output files and FASTA sequences alignments. Mol Ecol Resour 10:162–166

    Article  CAS  PubMed  Google Scholar 

  • Fogleman JC, Abril JR (1990) Ecological and evolutionary importance of host plant chemistry. In: Barker JSF, Starmer WT, MacIntyre RS (eds) Ecological and evolutionary genetics of Drosophila. Plenum Press, New York, pp 121–143

    Chapter  Google Scholar 

  • Fu YX (1996) New statistical tests of neutrality for DNA samples from a population. Genetics 143:557–570

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fu YX, Li WH (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gloss AD, Vassão DG, Hailey AL, Nelson Dittrich AC, Schramm K, Reichelt M, Rast TJ, Weichsel A, Cravens MG, Gershenzon J, Monrfort WR, Whiteman NK (2014) Evolution in an ancient detoxification pathway is coupled with a transition to herbivory in the Drosophilidae. Mol Biol Evol 31:2441–2456. doi:10.1093/molbev/msu201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282

    CAS  PubMed  Google Scholar 

  • Kircher HW (1982) Chemical composition of cacti and its relationship to Sonoran Desert Drosophila. In: Barker JSF, Starmer WT (eds) Ecological genetics and evolution: the cactus-yeast-Drosophila model system. Academic Press, New York, pp 143–158

    Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452. doi:10.1093/bioinformatics/btp187

    Article  CAS  PubMed  Google Scholar 

  • Low WY, Ng HL, Morton CJ, Parker MW, Batterham P, Robin C (2007) Molecular evolution of glutathione S-transferases in the genus Drosophila. Genetics 177:1363–1375. doi:10.1534/genetics.107.075838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Low WY, Feil SC, Ng HL, Gorman MA, Morton CJ, Pyke J, McConville MJ, Bieri M, Mok YF, Robin C, Gooley PR, Parker MW, Batterham P (2010) Recognition and detoxification of the insecticide DDT by Drosophila melanogaster glutathione S-transferase D1. J Mol Biol 399:358–366. doi:10.1016/j.jmb.2010.04.020

    Article  CAS  PubMed  Google Scholar 

  • Machado CA, Matzkin LM, Reed LK, Markow T (2007) Multilocus nuclear sequences reveal intra- and interspecific relationships among chromosomally polymorphic species of cactophilic Drosophila. Mol Ecol 16:3009–3024. doi:10.1111/j.1365-294X.2007.03325.x

    Article  CAS  PubMed  Google Scholar 

  • Markow TA, O’Grady PM (2005) Evolutionary genetics of reproductive behavior in Drosophila: connecting the dots. Annu Rev Genet 39:263–291. doi:10.1146/annurev.genet.39.073003.112454

    Article  CAS  PubMed  Google Scholar 

  • Markow TA, O’Grady PM (2006) Drosophila: a guide to species identification and use. Academic Press, London

    Google Scholar 

  • Matzkin LM (2008) The molecular basis of host adaptation in cactophilic Drosophila: molecular evolution of a glutathione S-transferase gene (GstD1) in Drosophila mojavensis. Genetics 178:1073–1083. doi:10.1534/genetics.107.083287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matzkin LM, Watts TD, Bitler BG, Machado CA, Markow TA (2006) Functional genomics of cactus host shifts in Drosophila mojavensis. Mol Ecol 15:4635–4643. doi:10.1111/j.1365-294X.2006.03102.x

    Article  CAS  PubMed  Google Scholar 

  • McDonald JH, Kreitman M (1991) Adaptive protein evolution at the Adh locus in Drosophila. Nature 351:652–654. doi:10.1038/351652a0

    Article  CAS  PubMed  Google Scholar 

  • Mes TH (2003) Demographic expansion of parasitic nematodes of livestock based on mitochondrial DNA regions that conflict with the infinite-sites model. Mol Ecol 12:1555–1566

    Article  CAS  PubMed  Google Scholar 

  • Oliveira DCSG, O’Grady PM, Etges WJ, Heed WB, DeSalle R (2005) Molecular systematics and geographical distribution of the Drosophila longicornis species complex (Diptera: Drosophilidae). Zootaxa 1069:1–32. doi:10.11646/zootaxa.1069.1.1

    Article  Google Scholar 

  • Oliveira DCSG, Almeida FC, O’Grady PM, Armella MA, DeSalle R, Etges WJ (2012) Monophyly, divergence times, and evolution of host plant use inferred from a revised phylogeny of Drosophila repleta species group. Mol Phylogenet Evol 64:533–544. doi:10.1016/j.ympev.2012.05.012

    Article  PubMed  Google Scholar 

  • Ramírez-Soriano A, Ramos-Onsins SE, Rozas J, Calafell F, Navarro A (2008) Statistical power analysis of neutrality tests under demographic expansions, contractions and bottlenecks with recombination. Genetics 179:555–567

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramos-Onsins S, Rozas J (2002) Statistical properties of new neutrality tests against population growth. Mol Biol Evol 19:2092–2100

    Article  CAS  PubMed  Google Scholar 

  • Raza H (2011) Dual localization of glutathione S-transferase in the cytosol and mitochondria: implications in oxidative stress, toxicity and disease. FEBS J 278:4243–4251. doi:10.1111/j.1742-4658.2011.08358.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richards FM (1977) Areas, volumes, packing, and protein structure. Ann Rev Biophys Bioeng 6:151–176

    Article  CAS  Google Scholar 

  • Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569

    CAS  PubMed  Google Scholar 

  • Sanchez-Flores A, Penaloza F, Carpinteyro J, Nazario N, Abreu-Goodger C, Machado CA, Markow TA (2016) Genome evolution in three species of cactophilic Drosophila. G3: Genes Genom Genet 6:3097–3105

    Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi:10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang AH, Tu CP (1994) Biochemical characterization of Drosophila glutathione S-transferases D1 and D21. J Biol Chem 269:27876–27884

    CAS  PubMed  Google Scholar 

  • Tars K, Olin B, Mannervik B (2010) Structural basis for featuring of steroid isomerase activity in alpha class glutathione transferases. J Mol Biol 397:332–340. doi:10.1016/j.jmb.2010.01.023

    Article  CAS  PubMed  Google Scholar 

  • Wallace RS, Gibson AC (2002) Evolution and systematics. In: Nobel PS (ed) Cacti: biology and uses. University of California Press, Berkeley, pp 1–21

    Google Scholar 

  • Yang Z (2007) PAML 4: a program package for phylogenetic analysis by maximum likelihood. Mol Biol Evol 24(8):1586–1591

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2015) The I-TASSER Suite: protein structure and function prediction. Nat Methods 12:7–8. doi:10.1038/nmeth.3213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank three anonymous reviewers for constructive comments and suggestions. We thank Mariana Ramírez Loustalot Laclette for her help with this project. We also thank the Drosophila Species Stock Center at the University of California (San Diego), for providing lines for the study. This work was supported by Consejo Nacional de Ciencia y Tecnología (CONACYT) Proyecto 180385, and funds from LANGEBIO-CINVESTAV to T.A.M.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Therese Ann Markow or Carlos A. Machado.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 11 kb)

Supplementary material 2 (PDF 85 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Olmos, K., Markow, T.A. & Machado, C.A. Evolution of GSTD1 in Cactophilic Drosophila . J Mol Evol 84, 285–294 (2017). https://doi.org/10.1007/s00239-017-9798-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-017-9798-4

Keywords

Navigation