Journal of Molecular Evolution

, Volume 83, Issue 1–2, pp 78–87 | Cite as

Denisovans, Melanesians, Europeans, and Neandertals: The Confusion of DNA Assumptions and the Biological Species Concept

  • Niccolo Caldararo
Letter to the Editor


A number of recent articles have appeared on the Denisova fossil remains and attempts to produce DNA sequences from them. One of these recently appeared in Science by Vernot et al. (Science 352:235–239, 2016). We would like to advance an alternative interpretation of the data presented. One concerns the problem of contamination/degradation of the determined DNA sequenced. Just as the publication of the first Neandertal sequence included an interpretation that argued that Neandertals had not contributed any genes to modern humans, the Denisovan interpretation has considerable influence on ideas regarding human evolution. The new papers, however, confuse established ideas concerning the nature of species, as well as the use of terms like premodern, Archaic Homo, and Homo heidelbergensis. Examination of these problems presents a solution by means of reinterpreting the results. Given the claims for gene transfer among a number of Mid Pleistocene hominids, it may be time to reexamine the idea of anagenesis in hominid evolution.


Ancient DNA Neandertals Denisovans Sima de los Huesos Premoderns Evolution Speciation Anagenesis 


  1. Abi-Rached L, Jobin MJ, Kulkarni S et al (2011) The shaping of modern human immune systems by multiregional admixture with archaic humans. Science 334(6052):89–94CrossRefPubMedPubMedCentralGoogle Scholar
  2. Adcock GJ, Dennis ES, Easteal S, Huttley GA, Jermiin LS et al (2001) Mitochondrial DNA sequences in ancient Australians: Implications for modern human origins. Proc. Natl. Acad. Sci. USA 98: 537–542 and correction Proc Natl Acad Sci USA 2002 99(1):541Google Scholar
  3. Ballard JW, Whitlock MC (2004) The incomplete natural history of mitochondria. Mol Ecol 4:729–744CrossRefGoogle Scholar
  4. Betty DJ, Chin-Atkins AN, Croft L, Sraml M, Easteal S (1996) Multiple independent origins of the COII/fRNAlys intergenic 9-bp mtDNA deletion in Aboriginal Australians. Am J Hum Genet 58:428–433PubMedPubMedCentralGoogle Scholar
  5. Brace CL (1967) The stages of human evolution: human and cultural origins. Prentice-Hall, Englewood CliffsGoogle Scholar
  6. Brauer G (1989) The evolution of modern humans: a comparison of the African and non-African evidence. In: Mellars Paul C, Stringer Chris B (eds) The human revolution. Princeton, Princeton University Press, pp 123–153Google Scholar
  7. Brauer G, Collard M, Stringer C (2004) On the reliability of recent tests of the out of Africa hypothesis for modern human origins. Anat Record Part A 279A:701–770CrossRefGoogle Scholar
  8. Caldararo N (1994) Storage conditions and physical treatments relating to the dating of the Dead Sea Scrolls. Radiocarbon 37(1):21–32CrossRefGoogle Scholar
  9. Caldararo N (1996) The HIV/AIDS epidemic: its evolutionary implications for human ecology with special reference to the immune system. The Science of the Total Environment 191:245–269CrossRefPubMedGoogle Scholar
  10. Caldararo N (2001) The evolution of HIV. Am J Hum Biol 13(2):289–292CrossRefGoogle Scholar
  11. Caldararo N (2002) Ancient DNA and human origins: the role of gene sequence variation and the species concept. Hum Nat Rev 2:317–321.
  12. Caldararo N (2003) Human phylogenetics and ancient DNA: the role of gene sequence variation in the species concept. Linnean 19:27–29Google Scholar
  13. Caldararo N (2004) Some effects of the use of ultrasonic devices in conservation and the question of standards for cleaning objects. Objects Specialty Group Postprints American Institute for Conservation of Historic and Artistic Works 11:126–153Google Scholar
  14. Caldararo N, Gabow S (2000) Mitochondrial DNA analysis and the place of Neandertals in Homo. Anc Biomol 3:135–158Google Scholar
  15. Caldararo N, Guthrie M (1998) Mitochondrial DNA, the Y chromosome and the origins of modern humans. Homo 49(2):225–240Google Scholar
  16. Caldararo N, Guthrie M (2012) A note on the denisova cave mtDNA sequence. Nature Precedings. doi: 10.1038/npre.2012.5360.4
  17. Callaway E (2013) Hominin DNA baffles experts. Nature 504:16–17CrossRefPubMedGoogle Scholar
  18. Coon C (1962) The origin of races. Knopf, New YorkGoogle Scholar
  19. Carter RW (2007) Mitochondrial diversity within modern human populations. Nucleic Acids Res 35(9): 3039–3045. for details
  20. Conroy GC (2005) Reconstructing human origins, 2nd edn. W.W Norton, New YorkGoogle Scholar
  21. Cooper A, Rambaut A, Macaulay V et al (2001) Human origins and ancient human DNA. Science 292:1655–1656CrossRefPubMedGoogle Scholar
  22. Cree LM, Samuels DC, Chimney PF (2009) The inheritance of pathogenic mitochondrial mutations. Biophys Acta (BBA) 1792(12):1097–1102Google Scholar
  23. Ehert C (1974) Ethiopians and east Africans: the problem of contacts. EAPH, NairobiGoogle Scholar
  24. Fabrega H Jr (1997) Evolution of sickness and healing. University of California Press, BerkeleyGoogle Scholar
  25. Forster P (2003) To err is human. Ann Hum Genet 67:2–4CrossRefPubMedGoogle Scholar
  26. Forster P, Torroni A, Renfrew C, Rohl A (2001) Phylogenetic star contraction applied to Asian and Papuan mtDNA evolution. Mol Biol Evol 18(10):1864–1881CrossRefPubMedGoogle Scholar
  27. Fraumene C, Belle EMS, Castri L et al (2006) High resolution analysis and phylogenetic network construction using complete mtDNA sequences in Sardinian genetic isolates. Mol Biol Evol 23(11):2101–2111CrossRefPubMedGoogle Scholar
  28. Frantz LAF, Madsen O, Megens H-J, Groenen MAM, Lohse K (2014) Testing models of speciation from genome sequences: divergence and asymmetric admixture in Island South-East Asian Sus species during the Plio-Pleistocene climatic fluctuations. Mol Ecol 23(22):5566–5574CrossRefPubMedPubMedCentralGoogle Scholar
  29. Fredricks DN, Relman DR (1996) Sequence-based identification of microbial pathogens: a reconsideration of Koch’s postulates. Clin Microbiol Rev 9(1):18–33PubMedGoogle Scholar
  30. Gibbons A (2016) Five matings for moderns Neandertals. Science 351(6279):1250–1251CrossRefPubMedGoogle Scholar
  31. Gould SJ (1977) Ontogeny and phylogeny. Belknap Press, CambridgeGoogle Scholar
  32. Green RE, Krause J, Ptak S et al (2006) Analysis of one million base pairs of Neandertal DNA. Nature 444:330–336CrossRefPubMedGoogle Scholar
  33. Green RE, Krause J, Briggs AW et al (2010) A draft sequence of the Neandertal genome. Science 328:710–722CrossRefPubMedGoogle Scholar
  34. Haller JS Jr (1970) The species problem: 19th century concepts of racial inferiority in the origin of man controversy. Am Anthropol 72(6):1319–1329CrossRefGoogle Scholar
  35. Handt O, Richards M, Tromsdorf M, Kilger C et al (1994) Molecular genetic analyses of the Tyrolean Ice Man. Science 264:1775–1778CrossRefPubMedGoogle Scholar
  36. Handt O, Krings M, Ward RH, Paabo S (1996) The retrieval of ancient human DNA sequences. Am J Hum Genet 59:368–376PubMedPubMedCentralGoogle Scholar
  37. Harvati K, Stringer C, Grun R et al (2011) The later stone age calvaria from iwo eleru, nigeria: morphology and chronology. PLoS ONE 6(9):e24024CrossRefPubMedPubMedCentralGoogle Scholar
  38. Hawks JD, Wolpoff MH (2001a) The accretion model of Neandertal evolution. Evolution 55(7):1474–1485CrossRefPubMedGoogle Scholar
  39. Hawks JD, Wolpoff MH (2001b) Brief communication: Paleoanthropology and the population genetics of ancient genes. Am J Phys Anthropol 114(3):269–272CrossRefPubMedGoogle Scholar
  40. Hawks J, Oh S, Hunley K, Dobson S, Cabana G, Dayalu P, Wolpoff MH (2000) An Australasian test of the recent African origin theory using the WLH 50 calvarium. J Hum Evol 39:1–22CrossRefPubMedGoogle Scholar
  41. Horai S, Hayasaka K (1990) “Intraspecific nucleotide sequence differences in the major noncoding region of human mitochondrial DNA. Am J Hum Genet 46:828–842PubMedPubMedCentralGoogle Scholar
  42. Kahle TB, Caldararo N (1986) State of preservation of the Dead Sea Scrolls. Nature 321(6066):121–122CrossRefGoogle Scholar
  43. Kennedy KAR, Sonakia A, Chiment J, Verma KK (1991) Is the Narmada hominid an Indian Homo erectus? Am J Phys Anthropol 86:475–496CrossRefPubMedGoogle Scholar
  44. Keynes JM (1921) A treatise on probability. Cambridge Univerdity Press, CambridgeGoogle Scholar
  45. Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  46. Krause J, Fu Q, Good JM, Viola B, Shunkov MV, Derevianko AP, Pääbo S (2010) The complete mitochondrial DNA genome of an unknown hominin from southern Siberia. Nature 464(7290):894–897CrossRefPubMedGoogle Scholar
  47. Krings M, Stone A, Schmitz RW et al (1997) Neandertal DNA sequences and the origin of modern humans. Cell 90:19–30CrossRefPubMedGoogle Scholar
  48. Krings M, Geisert H, Schmitz R, Krainitzki H, Paabo Savante (1999) DNA sequence of the mitochondrial hypervariable region II from the Neandertal type specimen. Proc Natl Acad Sci USA 96:5581–5585CrossRefPubMedPubMedCentralGoogle Scholar
  49. Leakey LSB (1960) Adam’s ancestors. Harper Torchbooks, New YorkGoogle Scholar
  50. Lee HC, Yin PH, Wu CC et al (2005) Mitochondrial genome instability and mtDNA depletion in human cancers. Ann NY Acad Sci 1042:109–122CrossRefPubMedGoogle Scholar
  51. Lewin R (1989) Species questions in Modern Human origins. Science 243:1666–1667CrossRefPubMedGoogle Scholar
  52. Lohse K, Frantz LAF (2014) Neandertal admixture in Eurasia confirmed by maximum-likelihood analysis of three genomes. Genetics 196:1241–1251 (sup. Inf. S1-11) CrossRefPubMedPubMedCentralGoogle Scholar
  53. Longo MS, O’Neill MJ, O’Neill RJ (2011) Abundant human DNA contamination identified in non-primate genome databases. PLoS ONE 6(2):e16410. doi: 10.1371/journal.pone.0016410 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Maugh TH (2010) DNA tests confirm a previously unknown hominid species. Los Angeles Times, Los AngelesGoogle Scholar
  55. Mcdougall I, Brown FH, Fleagle JG (2005) Stratigraphic placement and age of modern humans from Kibish, Ethiopia. Nature 433(7027):733–736CrossRefPubMedGoogle Scholar
  56. Meyers M, Fu Q, Aximu-Petri A et al (2014) A mitochondrial genome sequence of a hominin from Sima de los Huesos. Nature 505:403–405CrossRefGoogle Scholar
  57. Montagu A (1962) Man: his first million years. Signet Science Library Edition, New YorkGoogle Scholar
  58. Needleman SB, Wunsch CD (1970) A general method applicable to the search of similarities in the amino acid sequence of two proteins. J Mol Biol 48:443–453CrossRefPubMedGoogle Scholar
  59. Nelson H, Jurmain R (1979) Introduction to physical anthropology. West Publishing, San FranciscoGoogle Scholar
  60. Pearson OM (2001) Postcranial remains and the origin of modern humans. Evol Anthropol 9(6):229–247CrossRefGoogle Scholar
  61. Phillips ML (2011) Genome databases suffer from the human touch. Sci Am 2011:2Google Scholar
  62. Reich D, Green RE, Kircher M et al (2010) Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature 468:1053–1060CrossRefPubMedPubMedCentralGoogle Scholar
  63. Rutledge LY, Patterson Brent R, Bradley W (2010) Analysis of Canis mitochondrial DNA demonstrates high concordance between the control region and ATPase genes. BMC Evol Bioly 10:215–228CrossRefGoogle Scholar
  64. Sawyer S, Renaud G, Viola B, Hublin J-J, Gansauge M-T et al (2015) Nuclear and mitochondrial DNA sequences from two Denisovan individuals. Proc Natl Acad Sci 112(51):15696–15700PubMedPubMedCentralGoogle Scholar
  65. Sellers PH (1974) On the theory and computation of evolutionary distances SIAM. J Appl Math 26:787–793Google Scholar
  66. Shokolenko I, Venediktova N, Bochkareva A et al (2009) Oxidative stress induces degradation of mitochondrial DNA. Nucleic Acids Res 37(8):2539–2548CrossRefPubMedPubMedCentralGoogle Scholar
  67. Stringer C (2012) The Status of Homo heidelbergensis (Schoetensack 1908). Evol Anthropol 21:101–107CrossRefPubMedGoogle Scholar
  68. Stringer CB, Andrews P (1988) Genetic and fossil evidence for the origin of modern humans. Science 239:1263–1269CrossRefPubMedGoogle Scholar
  69. Swartz JH, Maresca B (2006) Do molecular clocks run at all? A critique of molecular systematic. Biol Theory 1(4):357–371CrossRefGoogle Scholar
  70. Templeton AR (2005) Haplotype trees and modern human origins. Yearb Phys Anthropol 48:33–59CrossRefGoogle Scholar
  71. Tobias PV (1965) Early man in East Africa. Science 149:22–33CrossRefPubMedGoogle Scholar
  72. Vernot B, Akey JM (2014) Resurrecting surviving Neandertal lineages from modern human genomes. Science 343:1017–1021CrossRefPubMedGoogle Scholar
  73. Vernot B, Tucci S, Kelso J, Schraiber JG, Wolf AB et al (2016) Excavating Neandertal and Denisovan DNA from the genomes of Melanesian individuals. Science 352:235–239CrossRefPubMedGoogle Scholar
  74. Vorobieva NV, Sherbakov DY, Druzhkova Anna S et al (2011) Genotyping of Capreolus pygargus fossil DNA from Denisova cave reveals phylogenetic relationships between ancient and modern populations. PLoS ONE 6(8):e24045. doi: 10.1371/journal.pone.0024045 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Wagner G (1949) The bantu of north kavirondo, vol I. OUP, LondonGoogle Scholar
  76. Wayne RK (1993) Molecular evolution of the dog family. Trends Ecol Evol 9(6):218–224Google Scholar
  77. Weidenreich F (1938-9) On the Earliest representatives of modern mankind recovered on the soil of East Asia. Peking Natural History Bulletin, 13, Part 3:161–181Google Scholar
  78. Wen-Hsiung Li, Dan Graur (1991) Fundamentals of molecular evolution. Sinauer Associates, SunderlandGoogle Scholar
  79. White L (1949) The locus of mathematical reality: an anthropological footnote. Philos Sci 14(4):289–303CrossRefGoogle Scholar
  80. Wolpoff MH, Caspari R (1997) Race and human evolution. Simon and Schuster, New YorkGoogle Scholar
  81. Wolpoff MH, Hawks J, Frayer DW, Hunley K (2001) Modern human ancestry at the peripheries: a test of the replacement theory. Science 291:293–297CrossRefPubMedGoogle Scholar
  82. Wood W, Baker J (2011) Evolution in the genus homo. Annu Rev Ecol Evol Syst 42:47–69CrossRefGoogle Scholar
  83. Yao Y-G, Bravi C, Bandelt H-J (2004) A call for mtDNA data quality control in forensic science. Forensic Sci Int 141:1–6CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of AnthropologySan Francisco State UniversitySan FranciscoUSA

Personalised recommendations