Journal of Molecular Evolution

, Volume 82, Issue 6, pp 264–278 | Cite as

Natural Selection in Virulence Genes of Francisella tularensis

  • Mark K. Gunnell
  • Richard A. Robison
  • Byron J. Adams
Original Article
  • 335 Downloads

Abstract

A fundamental tenet of evolution is that alleles that are under negative selection are often deleterious and confer no evolutionary advantage. Negatively selected alleles are removed from the gene pool and are eventually extinguished from the population. Conversely, alleles under positive selection do confer an evolutionary advantage and lead to an increase in the overall fitness of the organism. These alleles increase in frequency until they eventually become fixed in the population. Francisella tularensis is a zoonotic pathogen and a potential biothreat agent. The most virulent type of F. tularensis, Type A, is distributed across North America with Type A.I occurring mainly in the east and Type A.II appearing mainly in the west. F. tularensis is thought to be a genome in decay (losing genes) because of the relatively large number of pseudogenes present in its genome. We hypothesized that the observed frequency of gene loss/pseudogenes may be an artifact of evolution in response to a changing environment, and that genes involved in virulence should be under strong positive selection. To test this hypothesis, we sequenced and compared whole genomes of Type A.I and A.II isolates. We analyzed a subset of virulence and housekeeping genes from several F. tularensis subspecies genomes to ascertain the presence and extent of positive selection. Eleven previously identified virulence genes were screened for positive selection along with 10 housekeeping genes. Analyses of selection yielded one housekeeping gene and 7 virulence genes which showed significant evidence of positive selection at loci implicated in cell surface structures and membrane proteins, metabolism and biosynthesis, transcription, translation and cell separation, and substrate binding and transport. Our results suggest that while the loss of functional genes through disuse could be accelerated by negative selection, the genome decay in Francisella could also be the byproduct of adaptive evolution driven by complex interactions between host, pathogen, and thier environment, as evidenced by several of its virulence genes which are undergoing strong, positive selection.

Keywords

Francisella tularensis Genome decay Natural selection TreeSAAP Virulence 

Notes

Acknowledgments

We thank the Utah Department of Health and the New Mexico Department of Health for help in obtaining the isolates used in this study, and for the thoughtful and constructive criticisms of the anonymous reviewers. Dr. Angelo Madonna of Dugway Proving Ground provided expert guidance and assistance in completing this work.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

Supplementary material

239_2016_9743_MOESM1_ESM.pdf (36 kb)
Supplementary material 1 (PDF 35 kb)
239_2016_9743_MOESM2_ESM.pdf (31 kb)
Supplementary material 2 (PDF 31 kb)
239_2016_9743_MOESM3_ESM.pdf (40 kb)
Supplementary material 3 (PDF 40 kb)
239_2016_9743_MOESM4_ESM.pdf (37 kb)
Supplementary material 4 (PDF 36 kb)
239_2016_9743_MOESM5_ESM.pdf (38 kb)
Supplementary material 5 (PDF 37 kb)
239_2016_9743_MOESM6_ESM.pdf (27 kb)
Supplementary material 6 (PDF 26 kb)
239_2016_9743_MOESM7_ESM.pdf (35 kb)
Supplementary material 7 (PDF 34 kb)

References

  1. Alexeev D, Alexeeva M, Baxter RL, Campopiano DJ, Webster SP, Sawyer L (1998) The crystal structure of 8-amino-7-oxononanoate synthase: a bacterial PLP-dependent, acyl-CoA-condensing enzyme. J Mol Biol 284(2):401–419. doi:10.1006/jmbi.1998.2086 CrossRefPubMedGoogle Scholar
  2. Angiuoli SV, Gussman A, Klimke W, Cochrane G, Field D, Garrity G, Kodira CD, Kyrpides N, Madupu R, Markowitz V, Tatusova T, Thomson N, White O (2008) Toward an online repository of standard operating procedures (SOPs) for (meta) genomic annotation. Omics-a Journal of Integrative Biology 12(2):137–141. doi:10.1089/omi.2008.0017 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Antwerpen M, Schacht E, Kaysser P, Splettstoesser W (2013) Complete genome sequence of a Francisella tularensis subsp. holarctica strain from Germany causing lethal infection in common marmosets. Genome Announc 1(1):e00135-12CrossRefPubMedPubMedCentralGoogle Scholar
  4. Barabote RD, Xie G, Brettin TS, Hinrichs SH, Fey PD, Jay JJ, Engle JL, Godbole SD, Noronha JM, Scheuermann RH, Zhou LW, Lion C, Dempsey MP (2009) Complete genome sequence of Francisella tularensis subspecies holarctica FTNF002-00. Plos One. doi:10.1371/journal.pone.0007041 PubMedPubMedCentralGoogle Scholar
  5. Beckstrom-Sternberg SM, Auerbach RK, Godbole S, Pearson JV, Beckstrom-Sternberg JS, Deng ZM, Munk C, Kubota K, Zhou Y, Bruce D, Noronha J, Scheuermann RH, Wang AH, Hao J, Wang JJ, Wagner DM, Brettin TS, Brown N, Gilna P, Keim PS (2007) Complete genomic characterization of a pathogenic A.II strain of Francisella tularensis subspecies tularensis. Plos One. doi:10.1371/journal.pone.0000947 Google Scholar
  6. Broekhuijsen M, Larsson P, Johansson A, Bystrom M, Eriksson U, Larsson E, Prior R, Sjostedt A, Titball RW, Forsman M (2003) Genome-wide DNA microarray analysis of Francisella tularensis strains demonstrates extensive genetic conservation within the species but identifies regions that are unique to the highly virulent F. tularensis subsp. tularensis. J Clin Microbiol 41(7):2924–2931CrossRefPubMedPubMedCentralGoogle Scholar
  7. Brown NF, Wickham ME, Coombes BK, Finlay BB (2006) Crossing the line: selection and evolution of virulence traits. PLoS Pathog 2(5):e42. doi:10.1371/journal.ppat.0020042 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Casadevall A, Pirofski LA (1999) Host-pathogen interactions: redefining the basic concepts of virulence and pathogenicity. Infect Immun 67(8):3703–3713PubMedPubMedCentralGoogle Scholar
  9. Champion MD, Zeng QD, Nix EB, Nano FE, Keim P, Kodira CD, Borowsky M, Young S, Koehrsen M, Engels R, Pearson M, Howarth C, Larson L, White J, Alvarado L, Forsman M, Bearden SW, Sjostedt A, Titball R, Michell SL, Birren B, Galagan J (2009) Comparative genomic characterization of Francisella tularensis strains belonging to low and high virulence subspecies. Plos Pathogens. doi:10.1371/journal.ppat.1000459 PubMedPubMedCentralGoogle Scholar
  10. Chaudhuri RR, Ren CP, Desmond L, Vincent GA, Silman NJ, Brehm JK, Elmore MJ, Hudson MJ, Forsman M, Isherwood KE, Gurycova D, Minton NP, Titball RW, Pallen MJ, Vipond R (2007) Genome sequencing shows that European isolates of Francisella tularensis subspecies tularensis are almost identical to US laboratory strain Schu S4. Plos One. doi:10.1371/journal.pone.0000352 PubMedPubMedCentralGoogle Scholar
  11. Chiang SL, Mekalanos JJ, Holden DW (1999) In vivo genetic analysis of bacterial virulence. Annu Rev Microbiol 53:129–154. doi:10.1146/annurev.micro.53.1.129 CrossRefPubMedGoogle Scholar
  12. Choi JS, Park NJ, Lim HK, Ko YK, Kim YS, Ryu SY, Hwang IT (2012) Plumbagin as a new natural herbicide candidate for Sicyon angulatus control agent with the target 8-amino-7-oxononanoate synthase. Pestic Biochem Physiol 103(3):166–172. doi:10.1016/j.pestbp.2012.04.007 CrossRefGoogle Scholar
  13. Chou PY, Fasman GD (1978) Empirical predictions of protein conformation. Annu Rev Biochem 47:251–276. doi:10.1146/annurev.bi.47.070178.001343 CrossRefPubMedGoogle Scholar
  14. Crandall KA, Kelsey CR, Imamichi H, Lane HC, Salzman NP (1999) Parallel evolution of drug resistance in HIV: failure of nonsynonymous/synonymous substitution rate ratio to detect selection. Mol Biol Evol 16(3):372–382CrossRefPubMedGoogle Scholar
  15. Demuth JP, Hahn MW (2009) The life and death of gene families. BioEssays 31(1):29–39. doi:10.1002/bies.080085 CrossRefPubMedGoogle Scholar
  16. Dhanasekaran M, Negi S, Imanishi M, Suzuki M, Sugiura Y (2008) Effects of bulkiness and hydrophobicity of an aliphatic amino acid in the recognition helix of the GAGA zinc finger on the stability of the hydrophobic core and DNA binding affinity. Biochemistry 47(45):11717–11724. doi:10.1021/bi801306d CrossRefPubMedGoogle Scholar
  17. El-Etr SH, Margolis JJ, Monack D, Robison RA, Cohen M, Moore E, Rasley A (2009) Francisella tularensis Type A strains cause the rapid encystment of Acanthamoeba castellanii and survive in amoebal cysts for three weeks postinfection. Appl Environ Microbiol 75(23):7488–7500. doi:10.1128/aem.01829-09 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Fay JC (2011) Weighing the evidence for adaptation at the molecular level. Trends Genet 27(9):343–349. doi:10.1016/j.tig.2011.06.003 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Feng Y, Chen Z, Liu SL (2011) Gene decay in Shigella as an incipient stage of host-adaptation. Plos One. doi:10.1371/journal.pone.0027754 Google Scholar
  20. Fraser ME, James MNG, Bridger WA, Wolodko WT (1999) A detailed structural description of Escherichia coli succinyl-CoA synthetase. J Mol Biol 285(4):1633–1653. doi:10.1006/jmbi.1998.2324 CrossRefPubMedGoogle Scholar
  21. Gallagher LA, McKevitt M, Ramage ER, Manoil C (2008) Genetic dissection of the Francisella novicida restriction barrier. J Bacteriol 190(23):7830–7837. doi:10.1128/jb.01188-08 CrossRefPubMedPubMedCentralGoogle Scholar
  22. George MG (2005) In: David RB, Richard WC, George MG, Don JB, Noel RK, James TS (eds) Bergey’s Manual® of Systematic Bacteriology. Springer, Germany.Google Scholar
  23. Gestin B, Valade E, Thibault F, Schneider D, Maurin M (2010) Phenotypic and genetic characterization of macrolide resistance in Francisella tularensis subsp. holarctica biovar I. J Antimicrob Chemother 65(11):2359–2367. doi:10.1093/jac/dkq315 CrossRefPubMedGoogle Scholar
  24. Grenha R, Levdikov VM, Fogg MJ, Blagova EV, Brannigan JA, Wilkinson AJ, Wilson KS (2005) Structure of purine nucleoside phosphorylase (DeoD) from Bacillus anthracis. Acta Crystallogr Sect F 61:459–462. doi:10.1107/s174430910501095x CrossRefGoogle Scholar
  25. Gunnell MK, Lovelace CD, Satterfield BA, Moore EA, O’Neill KL, Robison RA (2012) A multiplex real-time PCR assay for the detection and differentiation of Francisella tularensis subspecies. J Med Microbiol 61(11):1525–1531. doi:10.1099/jmm.0.046631-0 CrossRefPubMedGoogle Scholar
  26. Hain T, Chatterjee SS, Ghaia R, Kuenne CT, Billion A, Steinweg C, Domann E, Karst U, Jansch L, Wehland J, Eisenreich W, Bacherc A, Joseph B, Schar J, Kreft J, Klumpp J, Loessner MJ, Dorscht J, Neuhaus K, Fuchs TM, Scherer S, Doumith M, Jacquet C, Martin P, Cossart P, Rusniock C, Glaser P, Buchrieser C, Goebel W, Chakraborty T (2007) Pathogenomics of Listeria spp. Int J Med Microbiol 297(7–8):541–557. doi:10.1016/j.ijmm.2007.03.016 CrossRefPubMedGoogle Scholar
  27. Harris SR, Robinson C, Steward KF, Webb KS, Paillot R, Parkhill J, Holden MTG, Waller AS (2015) Genome specialization and decay of the strangles pathogen, Streptococcus equi, is driven by persistent infection. Genome Res 25(9):1360–1371. doi:10.1101/gr.189803.115 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hasegawa M, Kishino H, Yano TA (1985) Dating of the human ape splitting by a molecular clock of mitochondrial-DNA. J Mol Evol 22(2):160–174. doi:10.1007/bf02101694 CrossRefPubMedGoogle Scholar
  29. Hensel M, Shea JE, Gleeson C, Jones MD, Dalton E, Holden DW (1995) Simultaneous identification of bacterial virulence genes by negative selection. Science 269(5222):400–403. doi:10.1126/science.7618105 CrossRefPubMedGoogle Scholar
  30. Hormoz S (2013) Amino acid composition of proteins reduces deleterious impact of mutations. Scientific Reports. doi:10.1038/srep02919 PubMedPubMedCentralGoogle Scholar
  31. Johansson A, Farlow J, Larsson P, Dukerich M, Chambers E, Bystrom M, Fox J, Chu M, Forsman M, Sjostedt A, Keim P (2004) Worldwide genetic relationships among Francisella tularensis isolates determined by multiple-locus variable-number tandem repeat analysis. J Bacteriol 186(17):5808–5818CrossRefPubMedPubMedCentralGoogle Scholar
  32. Jones DT (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292(2):195–202. doi:10.1006/jmbi.1999.3091 CrossRefPubMedGoogle Scholar
  33. Jones CL, Napier BA, Sampson TR, Llewellyn AC, Schroeder MR, Weiss DS (2012) Subversion of host recognition and defense systems by Francisella spp. Microbiol Mol Biol Rev 76(2):383–404. doi:10.1128/mmbr.05027-11 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kaper JB (2005) Pathogenic Escherichia coli. Int J Med Microbiol 295(6–7):355–356. doi:10.1016/j.ijmm.2005.06.008 CrossRefPubMedGoogle Scholar
  35. Keim P, Johansson A, Wagner DM (2007) Molecular epidemiology, evolution, and ecology of Francisella. Francisella Tularensis: Biology, Pathogenicity, Epidemiology, and Biodefense 1105:30–66. doi:10.1196/annals.1409.011 Google Scholar
  36. Kerbarh O, Campopiano DJ, Baxter RL (2006) Mechanism of alpha-oxoamine synthases: identification of the intermediate Claisen product in the 8-amino-7-oxononanoate synthase reaction. Chem Commun 1:60–62. doi:10.1039/b511837a CrossRefGoogle Scholar
  37. Kone BC, Kuncewicz T, Zhang WZ, Yu ZY (2003) Protein interactions with nitric oxide synthases: controlling the right time, the right place, and the right amount of nitric oxide. American Journal of Physiology-Renal Physiology 285(2):F178–F190. doi:10.1152/ajprenal.00048.2003 CrossRefPubMedGoogle Scholar
  38. Lan T, Yang ZL, Yang X, Liu YJ, Wang XR, Zeng QY (2009) Extensive functional diversification of the Populus glutathione S-transferase supergene family. Plant Cell 21(12):3749–3766. doi:10.1105/tpc.109.070219 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and clustal X version 2.0. Bioinformatics 23(21):2947–2948. doi:10.1093/bioinformatics/btm404 CrossRefPubMedGoogle Scholar
  40. Larsson P, Oyston PCF, Chain P, Chu MC, Duffield M, Fuxelius HH, Garcia E, Halltorp G, Johansson D, Isherwood KE, Karp PD, Larsson E, Liu Y, Michell S, Prior J, Prior R, Malfatti S, Sjostedt A, Svensson K, Thompson N, Vergez L, Wagg JK, Wren BW, Lindler LE, Andersson SGE, Forsman M, Titball RW (2005) The complete genome sequence of Francisella tularensis, the causative agent of tularemia. Nat Genet 37(2):153–159. doi:10.1038/ng1499 CrossRefPubMedGoogle Scholar
  41. Lory S, Strom MS (1997) Structure-function relationship of type-IV prepilin peptidase of Pseudomonas aeruginosa - A review. Gene 192(1):117–121. doi:10.1016/s0378-1119(96)00830-x CrossRefPubMedGoogle Scholar
  42. Luo W, Liu YP, Zhu XC, Zhao WJ, Huang L, Cai J, Xu ZN, Cen PL (2011) Cloning and characterization of purine nucleoside phosphorylase in Escherichia coli and subsequent ribavirin biosynthesis using immobilized recombinant cells. Enzyme and Microbial Technology 48(6–7):438–444. doi:10.1016/j.enzmictec.2011.03.008 CrossRefPubMedGoogle Scholar
  43. Masri L, Branca A, Sheppard AE, Papkou A, Laehnemann D, Guenther PS, Prahl S, Saebelfeld M, Hollensteiner J, Liesegang H, Brzuszkiewicz E, Daniel R, Michiels NK, Schulte RD, Kurtz J, Rosenstiel P, Telschow A, Bornberg-Bauer E, Schulenburg H (2015) Host-pathogen coevolution: the selective advantage of Bacillus thuringiensis virulence and its cry toxin genes. PLoS Biol 13(6):e1002169. doi:10.1371/journal.pbio.1002169 CrossRefPubMedPubMedCentralGoogle Scholar
  44. McClellan D, Ellison D (2010) Assessing and improving the accuracy of detecting protein adaptation with the TreeSAAP analytical software. Int J Bioinform Res Appl 6(2):120–133CrossRefPubMedGoogle Scholar
  45. McDonald JH, Kreitman M (1991) Adaptive protein evolution at the Adh locus in Drosophila. Nature 351(6328):652–654. doi:10.1038/351652a0 CrossRefPubMedGoogle Scholar
  46. Merlin C, Gardiner G, Durand S, Masters M (2002) The Escherichia coli metD locus encodes an ABC transporter which includes Abc (MetN), YaeE (MetI), and YaeC (MetQ). J Bacteriol 184(19):5513–5517. doi:10.1128/jb.184.19.5513-5517.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Messer PW, Petrov DA (2013) Frequent adaptation and the McDonald–Kreitman test. Proc Natl Acad Sci USA 110(21):8615–8620. doi:10.1073/pnas.1220835110 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Modise T, Ryder C, Mane SP, Bandara AB, Jensen RV, Inzana TJ (2012) Genomic comparison between a virulent type A1 strain of Francisella tularensis and its attenuated O-antigen mutant. J Bacteriol 194(10):2775-2776. doi:10.1128/JB.00152-12 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Muse SV, Gaut BS (1994) A likelihood approach for comparing synonymous and nonsynonymous nucleotide substitution rates, with application to the chloroplast genome. Mol Biol Evol 11(5):715–724PubMedGoogle Scholar
  50. Nalbantoglu U, Sayood K, Dempsey MP, Iwen PC, Francesconi SC, Barbote RD, Xie G, Brettin TS, Hinrichs SH, Fey PD (2010) Large direct repeats flank genomic rearrangements between a new clinical isolate of Francisella tularensis subsp. tularensis A1 and Schu S4. PLoS One 5(2):e9007. doi:10.1371/journal.pone.0009007 CrossRefGoogle Scholar
  51. Nandi T, Ong C, Singh AP, Boddey J, Atkins T, Sarkar-Tyson M, Essex-Lopresti AE, Chua HH, Pearson T, Kreisberg JF, Nilsson C, Ariyaratne P, Ronning C, Losada L, Ruan Y, Sung WK, Woods D, Titball RW, Beacham I, Peak I, Keim P, Nierman WC, Tan P (2010) A genomic survey of positive selection in Burkholderia pseudomallei provides insights into the evolution of accidental virulence. PLoS Pathog 6(4):e1000845. doi:10.1371/journal.ppat.1000845 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New YorkGoogle Scholar
  53. Nudelman A, Marcovici-Mizrahi D, Nudelman A, Flint D, Wittenbach V (2004) Inhibitors of biotin biosynthesis as potential herbicides. Tetrahedron 60(8):1731–1748. doi:10.1016/j.tet.2003.12.047 CrossRefGoogle Scholar
  54. Owen CR, Lackman DB, Jellison WL, Buker EO, Bell JF (1964) Comparative studies of Francisella tularensis + Francisella novicida. J Bacteriol 87(3):000–676Google Scholar
  55. Oyston PCF (2008) Francisella tularensis: unravelling the secrets of an intracellular pathogen. J Med Microbiol 57(8):921–930. doi:10.1099/jmm.0.2008/000653-0 CrossRefPubMedGoogle Scholar
  56. Petrosino JF, Xiang Q, Karpathy SE, Jiang HY, Yerrapragada S, Liu YM, Gioia J, Hemphill L, Gonzalez A, Raghavan TM, Uzman A, Fox GE, Highlander S, Reichard M, Morton RJ, Clinkenbeard KD, Weinstock GM (2006) Chromosome rearrangement and diversification of Francisella tularensis revealed by the type B (OSU18) genome sequence. J Bacteriol 188(19):6977–6985. doi:10.1128/jb.00506-06 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Pond SLK, Frost SDW (2005) Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol 22(5):1208–1222. doi:10.1093/molbev/msi105 CrossRefGoogle Scholar
  58. Pond SLK, Frost SDW, Muse SV (2005) HyPhy: hypothesis testing using phylogenies. Bioinformatics 21(5):676–679. doi:10.1093/bioinformatics/bti079 CrossRefPubMedGoogle Scholar
  59. Ponnuswamy PK, Prabhakaran M, Manavalan P (1980) Hydrophobic packing and spatial arrangement of amino-acid-residues in globular-proteins. Biochim Biophys Acta 623(2):301–316. doi:10.1016/0005-2795(80)90258-5 CrossRefPubMedGoogle Scholar
  60. Prahhakaran M, Ponnuswamy PK (1979) The spatial distribution of physical, chemical, energetic and conformational properties of amino acid residues in globular proteins. J Theor Biol 80(4):485–504. doi:10.1016/0022-5193(79)90090-0 CrossRefGoogle Scholar
  61. Qu P-H, Chen S-Y, Scholz HC, Busse H-J, Gu Q, Kaempfer P, Foster JT, Glaeser SP, Chen C, Yang Z-C (2013) Francisella guangzhouensis sp nov., isolated from air-conditioning systems. Int J Syst Evol Microbiol 63:3628–3635. doi:10.1099/ijs.0.049916-0 CrossRefPubMedGoogle Scholar
  62. Read AF (1994) The evolution of virulence. Trends Microbiol 2(3):73–76CrossRefPubMedGoogle Scholar
  63. Rohmer L, Fong C, Abmayr S, Wasnick M, Freeman TJL, Radey M, Guina T, Svensson K, Hayden HS, Jacobs M, Gallagher LA, Manoil C, Ernst RK, Drees B, Buckley D, Haugen E, Bovee D, Zhou Y, Chang J, Levy R, Lim R, Gillett W, Guenthener D, Kang A, Shaffer SA, Taylor G, Chen JZ, Gallis B, D’Argenio DA, Forsman M, Olson MV, Goodlett DR, Kaul R, Miller SI, Brittnacher MJ (2007) Comparison of Francisella tularensis genomes reveals evolutionary events associated with the emergence of human pathogenic strains. Genome Biology. doi:10.1186/gb-2007-8-6-r102 PubMedPubMedCentralGoogle Scholar
  64. Santic M, Abu Kwaik Y (2013) Nutritional virulence of Francisella tularensis. Frontiers in Cellular and Infection Microbiology. doi:10.3389/fcimb.2013.00112 PubMedPubMedCentralGoogle Scholar
  65. Santic M, Al-Khodor S, Abu Kwaik Y (2010) Cell biology and molecular ecology of Francisella tularensis. Cell Microbiol 12(2):129–139. doi:10.1111/j.1462-5822.2009.01400.x CrossRefPubMedGoogle Scholar
  66. Schunder E, Rydzewski K, Grunow R, Heuner K (2013) First indication for a functional CRISPR/Cas system in Francisella tularensis. Int J Med Microbiol 303(2):51–60. doi:10.1016/j.ijmm.2012.11.004 CrossRefPubMedGoogle Scholar
  67. Sengupta D, Kundu S (2012) Do topological parameters of amino acids within protein contact networks depend on their physico-chemical properties? Physica A 391(17):4266–4278. doi:10.1016/j.physa.2012.03.034 CrossRefGoogle Scholar
  68. Sharp PM (1997) In search of molecular darwinism. Nature 385(6612):111–112. doi:10.1038/385111a0 CrossRefPubMedGoogle Scholar
  69. Siddaramappa S, Challacombe JF, Petersen JM, Pillai S, Kuske CR (2012) Genetic diversity within the genus Francisella as revealed by comparative analyses of the genomes of two North American isolates from environmental sources. Bmc Genomics. doi:10.1186/1471-2164-13-422 Google Scholar
  70. Sjostedt A (2007) Tularemia: history, epidemiology, pathogen physiology, and clinical manifestations. Francisella Tularensis: Biology, Pathogenicity, Epidemiology, and Biodefense 1105:1–29. doi:10.1196/annals.1409.009 Google Scholar
  71. Sridhar S, Sharma A, Kongshaug H, Nilsen F, Jonassen I (2012) Whole genome sequencing of the fish pathogen Francisella noatunensis subsp orientalis Toba04 gives novel insights into Francisella evolution and pathogenecity. Bmc Genomics. doi:10.1186/1471-2164-13-598 PubMedPubMedCentralGoogle Scholar
  72. Stancik LM, Stancik DM, Schmidt B, Barnhart DM, Yoncheva YN, Slonczewski JL (2002) pH-dependent expression of periplasmic proteins and amino acid catabolism in Escherichia coli. J Bacteriol 184(15):4246–4258. doi:10.1128/jb.184.15.4246-4258.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Staples JE, Kubota KA, Chalcraft LG, Mead PS, Petersen JM (2006) Epidemiologic and molecular analysis of human tularemia, United States, 1964–2004. Emerg Infect Dis 12(7):1113–1118CrossRefPubMedPubMedCentralGoogle Scholar
  74. Steele S, Brunton J, Ziehr B, Taft-Benz S, Moorman N, Kawula T (2013) Francisella tularensis harvests nutrients derived via ATG5-independent autophagy to support intracellular growth. Plos Pathogens. doi:10.1371/journal.ppat.1003562 Google Scholar
  75. Strom MS, Lory S (1993) Structure-function and biogenesis of the type-IV pili. Annu Rev Microbiol 47:565–596. doi:10.1146/annurev.micro.47.1.565 CrossRefPubMedGoogle Scholar
  76. Strom MS, Nunn DN, Lory S (1993) A single bifunctional enzyme, PilD, catalyzes cleavage and N-methylation of proteins belonging to the type-IV pilin family. Proc Natl Acad Sci USA 90(6):2404–2408. doi:10.1073/pnas.90.6.2404 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Su J, Yang J, Zhao D, Kawula TH, Banas JA, Zhang J-R (2007) Genome-wide identification of Francisella tularensis virulence determinants. Infect Immun 75(6):3089–3101. doi:10.1128/iai.01865-06 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Sutera V, Levert M, Burmeister WP, Schneider D, Maurin M (2014) Evolution toward high-level fluoroquinolone resistance in Francisella species. J Antimicrob Chemother 69(1):101–110. doi:10.1093/jac/dkt321 CrossRefPubMedGoogle Scholar
  79. Suzuki Y, Gojobori T (1999) A method for detecting positive selection at single amino acid sites. Mol Biol Evol 16(10):1315–1328CrossRefPubMedGoogle Scholar
  80. Svensson K, Larsson P, Johansson D, Bystrom M, Forsman M, Johansson A (2005) Evolution of subspecies of Francisella tularensis. J Bacteriol 187(11):3903–3908CrossRefPubMedPubMedCentralGoogle Scholar
  81. Svensson K, Sjodin A, Bystrom M, Granberg M, Brittnacher MJ, Rohmer L, Jacobs MA, Sims-Day EH, Levy R, Zhou Y, Hayden HS, Lim R, Chang J, Guenthener D, Kang A, Haugen E, Gillett W, Kaul R, Forsman M, Larsson P, Johansson A (2012) Genome sequence of Francisella tularensis subspecies holarctica strain FSC200, isolated from a child with tularemia. J Bacteriol 194(24):6965–6966. doi:10.1128/jb.01040-12 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739. doi:10.1093/molbev/msr121 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Taylor SD, de la Cruz KD, Porter ML, Whiting MF (2005) Characterization of the long-wavelength opsin from Mecoptera and Siphonaptera: does a flea see? Mol Biol Evol 22(5):1165–1174. doi:10.1093/molbev/msi110 CrossRefPubMedGoogle Scholar
  84. Walshaw DL, Wilkinson A, Mundy M, Smith M, Poole PS (1997) Regulation of the TCA cycle and the general amino acid permease by overflow metabolism in Rhizobium leguminosarum. Microbiology-Uk 143:2209–2221CrossRefGoogle Scholar
  85. Ward PN, Holden MTG, Leigh JA, Lennard N, Bignell A, Barron A, Clark L, Quail MA, Woodward J, Barrell BG, Egan SA, Field TR, Maskell D, Kehoe M, Dowson CG, Chanter N, Whatmore AM, Bentley SD, Parkhill J (2009) Evidence for niche adaptation in the genome of the bovine pathogen Streptococcus uberis. Bmc Genomics. doi:10.1186/1471-2164-10-54 Google Scholar
  86. Weiss DS, Brotcke A, Henry T, Margolis JJ, Chan K, Monack DM (2007) In vivo negative selection screen identifies genes required for Francisella virulence. Proc Natl Acad Sci USA 104(14):6037–6042. doi:10.1073/pnas.0609675104 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Wolodko WT, Fraser ME, James MNG, Bridger WA (1994) The crystal-structure of cussinyl-CoA synthetase from Escherichia coli at 2.5 angstrom resolution. J Biol Chem 269(14):10883–10890PubMedGoogle Scholar
  88. Woolley S, Johnson J, Smith MJ, Crandall KA, McClellan DA (2003) TreeSAAP: selection on amino acid properties using phylogenetic trees. Bioinformatics 19(5):671–672. doi:10.1093/bioinformatics/btg043 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Mark K. Gunnell
    • 1
    • 2
  • Richard A. Robison
    • 1
  • Byron J. Adams
    • 3
  1. 1.Department of Microbiology and Molecular BiologyBrigham Young UniversityProvoUSA
  2. 2.Microbiology Branch, Life Sciences DivisionDugway Proving GroundDugwayUSA
  3. 3.Department of BiologyBrigham Young UniversityProvoUSA

Personalised recommendations