Advertisement

Journal of Molecular Evolution

, Volume 82, Issue 6, pp 251–263 | Cite as

Genomic Landscape of Long Terminal Repeat Retrotransposons (LTR-RTs) and Solo LTRs as Shaped by Ectopic Recombination in Chicken and Zebra Finch

Original Article

Abstract

Transposable elements (TEs) are nearly ubiquitous among eukaryotic genomes, but TE contents vary dramatically among phylogenetic lineages. Several mechanisms have been proposed as drivers of TE dynamics in genomes, including the fixation/loss of a particular TE insertion by selection or drift as well as structural changes in the genome due to mutation (e.g., recombination). In particular, recombination can have a significant and directional effect on the genomic TE landscape. For example, ectopic recombination removes internal regions of long terminal repeat retrotransposons (LTR-RTs) as well as one long terminal repeat (LTR), resulting in a solo LTR. In this study, we focus on the intra-species dynamics of LTR-RTs and solo LTRs in bird genomes. The distribution of LTR-RTs and solo LTRs in birds is intriguing because avian recombination rates vary widely within a given genome. We used published linkage maps and whole genome assemblies to study the relationship between recombination rates and LTR-removal events in the chicken and zebra finch. We hypothesized that regions with low recombination rates would harbor more full-length LTR-RTs (and fewer solo LTRs) than regions with high recombination rates. We tested this hypothesis by comparing the ratio of full-length LTR-RTs and solo LTRs across chromosomes, across non-overlapping megabase windows, and across physical features (i.e., centromeres and telomeres). The chicken data statistically supported the hypothesis that recombination rates are inversely correlated with the ratio of full-length to solo LTRs at both the chromosome level and in 1-Mb non-overlapping windows. We also found that the ratio of full-length to solo LTRs near chicken telomeres was significantly lower than those ratios near centromeres. Our results suggest a potential role of ectopic recombination in shaping the chicken LTR-RT genomic landscape.

Keywords

Non-allelic homologous recombination Endogenous retrovirus Solo LTR Red jungle fowl 

Notes

Acknowledgments

We thank Purdue’s Department of Forestry and Natural Resources and the China Scholarship Council for funding Y.J., and Purdue’s Office of the Provost for funding to J.A.D. through the University Faculty Scholar program. We thank S. Steinbiss for maintaining LTRdigest, M. Groenen for providing the data on centromeres in chicken, M. Sundaram for statistical advice, members of DeWoody Lab, and anonymous reviewers and the editor for providing constructive criticism on an earlier version of this paper.

Compliance with Ethical Standard

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

239_2016_9741_MOESM1_ESM.xlsx (394 kb)
Supplementary material 1 (XLSX 394 kb)

References

  1. Backström N, Forstmeier W, Schielzeth H et al (2010) The recombination landscape of the zebra finch Taeniopygia guttata genome. Genome Res 20:485–495. doi: 10.1101/gr.101410.109 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Baker BS, Carpenterl ATC, Carolina N et al (1976) The genetic control of meiosis. Annu Rev Genet 10:53–134. doi: 10.1146/annurev.ge.10.120176.000413 CrossRefPubMedGoogle Scholar
  3. Barrón MG, Fiston-Lavier A-S, Petrov DA, González J (2014) Population genomics of transposable elements in Drosophila. Annu Rev Genet 48:561–581. doi: 10.1146/annurev-genet-120213-092359 CrossRefPubMedGoogle Scholar
  4. Benkel B, Rutherford K (2014) Endogenous avian leukosis viral loci in the Red Jungle Fowl genome assembly. Poult Sci 93:2988–2990. doi: 10.3382/ps.2014-04309 CrossRefPubMedGoogle Scholar
  5. Bennetzen JL, Kellogg EA (1997) Do plants have a oe-way ticket to genomic obesity? Plant Cell 9:1509–1514CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bergero R, Charlesworth D (2008) The evolution of restricted recombination in sex chromosomes. Trends Ecol Evol 24:94–102. doi: 10.1016/j.tree.2008.09.010 CrossRefPubMedGoogle Scholar
  7. Braun EL, Kimball RT, Han K-L et al (2011) Homoplastic microinversions and the avian tree of life. BMC Evol Biol 11:141. doi: 10.1186/1471-2148-11-141 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Burt DW (2002) Origin and evolution of avian microchromosomes. Cytogenet Genome Res 96:97–112CrossRefPubMedGoogle Scholar
  9. Champely S (2015) pwr: basic functions for power analysis. R package version 1.1-3. http://CRAN.R-project.org/package=pwr
  10. Charlesworth B (1991) Transposable elements in natural populations with a mixture of selected and neutral insertion sites. Genet Res 57:127–134. doi: 10.1017/S0016672300029190 CrossRefPubMedGoogle Scholar
  11. Charlesworth B, Campos JL (2014) The relations between recombination rate and patterns of molecular variation and evolution in Drosophila. Annu Rev Genet 48:383–403. doi: 10.1146/annurev-genet-120213-092525 CrossRefPubMedGoogle Scholar
  12. Charlesworth B, Charlesworth D (1983) The population dynamics of transposable elements. Genet Res 42:1–27. doi: 10.1017/S0016672300021455 CrossRefGoogle Scholar
  13. Cui J, Zhao W, Huang Z et al (2014) Low frequency of paleoviral infiltration across the avian phylogeny. Genome Biol 15:539. doi: 10.1186/s13059-014-0539-3 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dolgin ES, Charlesworth B, Cutter AD (2008) Population frequencies of transposable elements in selfing and outcrossing Caenorhabditis nematodes. Genet Res (Camb) 90:317–329. doi: 10.1017/S0016672308009440 CrossRefGoogle Scholar
  15. Du J, Tian Z, Hans CS et al (2010) Evolutionary conservation, diversity and specificity of LTR-retrotransposons in flowering plants: insights from genome-wide analysis and multi-specific comparison. Plant J 63:584–598. doi: 10.1111/j.1365-313X.2010.04263.x CrossRefPubMedGoogle Scholar
  16. Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14:755–763CrossRefPubMedGoogle Scholar
  17. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. doi: 10.1093/nar/gkh340 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. doi: 10.1093/bioinformatics/btq461 CrossRefPubMedGoogle Scholar
  19. Elferink MG, van As P, Veenendaal T et al (2010) Regional differences in recombination hotspots between two chicken populations. BMC Genet 11:11. doi: 10.1186/1471-2156-11-11 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Ellegren H (2010) Evolutionary stasis: the stable chromosomes of birds. Trends Ecol Evol 25:283–291. doi: 10.1016/j.tree.2009.12.004 CrossRefPubMedGoogle Scholar
  21. Ellinghaus D, Kurtz S, Willhoeft U (2008) LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinform 9:18. doi: 10.1186/1471-2105-9-18 CrossRefGoogle Scholar
  22. Epplen JT, Leipoldt M, Engel W, Schmidtke J (1978) DNA sequence organisation in avian genomes. Chromosoma 69:307–321. doi: 10.1007/BF00332134 CrossRefPubMedGoogle Scholar
  23. Farré M, Micheletti D, Ruiz-Herrera A (2013) Recombination rates and genomic shuffling in human and chimpanzee—a new twist in the chromosomal speciation theory. Mol Biol Evol 30:853–864. doi: 10.1093/molbev/mss272 CrossRefPubMedGoogle Scholar
  24. Frahry MB, Sun C, Chong RA, Mueller RL (2015) Low levels of LTR retrotransposon deletion by ectopic recombination in the gigantic genomes of salamanders. J Mol Evol 80:120–129. doi: 10.1007/s00239-014-9663-7 CrossRefPubMedGoogle Scholar
  25. Fridolfsson A-K, Heng H, Copeland NG et al (1998) Evolution of the avian sex chromosomes from an ancestral pair of autosomes. Proc Natl Acad Sci USA 95:8147–8152CrossRefPubMedPubMedCentralGoogle Scholar
  26. González J, Petrov DA (2012) Evolutionary of genome content: population dynamics of transposable elements in flies and humans. In: Anisimova M (ed) Evolutionary genomics: statistical and computational methods, vol 1. Springer Humana, Totowa, NJ, pp 361–383CrossRefGoogle Scholar
  27. Goodchild NL, Wilkinson DA, Mager DL (1993) Recent evolutionary expansion of a subfamily of RTVL-H Human Endogenous Retrovirus-like elements. Virology 196:778–788CrossRefPubMedGoogle Scholar
  28. Gregory TR (2002) A bird’s-eye view of the C-value enigma: genome size, cell size, and metabolic rate in the class Aves. Evolution (NY) 56:121–130CrossRefGoogle Scholar
  29. Gregory TR, Andrews CB, McGuire JA, Witt CC (2009) The smallest avian genomes are found in hummingbirds. Proc R Soc B Biol Sci 276:3753–3757. doi: 10.1098/rspb.2009.1004 CrossRefGoogle Scholar
  30. Groenen MAM, Wahlberg P, Foglio M et al (2009) A high-density SNP-based linkage map of the chicken genome reveals sequence features correlated with recombination rate. Genome Res 19:510–519. doi: 10.1101/gr.086538.108 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hayward A, Grabherr M, Jern P (2013) Broad-scale phylogenomics provides insights into retrovirus-host evolution. Proc Natl Acad Sci USA 110:20146–20151. doi: 10.1073/pnas.1315419110 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Hill WG, Robertson A (1966) The effect of linkage on limits to artificial selection. Genet Res 8:269–294. doi: 10.1017/S0016672300010156 CrossRefPubMedGoogle Scholar
  33. Hinrichs AS, Karolchik D, Baertsch R et al (2006) The UCSC genome browser database: update 2006. Nucl Acids Res 34:D590–D598. doi: 10.1093/nar/gkj144 CrossRefPubMedGoogle Scholar
  34. Huda A, Polavarapu N, Jordan IK, McDonald JF (2008) Endogenous retroviruses of the chicken genome. Biol Direct 3:9. doi: 10.1186/1745-6150-3-9 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Hughes AL, Hughes MK (1995) Small genomes for better flyers. Nature 377:391CrossRefPubMedGoogle Scholar
  36. ICGSC (2004) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432:695–716. doi: 10.1038/nature03154 CrossRefGoogle Scholar
  37. Jurka J, Kapitonov VV, Pavlicek A et al (2005) Repbase update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110:462–467. doi: 10.1159/000084979 CrossRefPubMedGoogle Scholar
  38. Kaback DB, Guacci V, Barber D, Mahon JW (1992) Chromosome size-dependent control of meiotic recombination. Science 256:228–232CrossRefPubMedGoogle Scholar
  39. Kaback DB, Barber D, Mahon J et al (1999) Chromosome size-dependent control of meiotic reciprocal recombination in Saccharomyces cerevisiae: the role of crossover interference. Genetics 152:1475–1486PubMedPubMedCentralGoogle Scholar
  40. Katzourakis A, Pereira V, Tristem M (2007) Effects of recombination rate on human endogenous retrovirus fixation and persistence. J Virol 81:10712–10717. doi: 10.1128/JVI.00410-07 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Kim JM, Vanguri S, Boeke JD et al (1998) Transposable elements and genome organization : a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. Genome Res 8:464–478. doi: 10.1101/gr.8.5.464 PubMedGoogle Scholar
  42. Langley CH, Montgomery E, Hudson R et al (1988) On the role of unequal exchange in the containment of transposable element copy number. Genet Res 52:223–235. doi: 10.1017/S0016672300027695 CrossRefPubMedGoogle Scholar
  43. Lichten M, Borts RH, Haber JE (1986) Meiotic gene conversion and crossing over between dispersed homologous sequences occurs frequently in Saccharomyces cerevisiae. Genetics 115:233–246Google Scholar
  44. Liu GE, Hou Y, Brown T (2013) Analysis of CR1 repeats in the zebra finch genome. Syst Cybern Inform 11:66–71Google Scholar
  45. Lynch M, Conery JS (2003) The origins of genome complexity. Science 302:1401–1404. doi: 10.1126/science.1089370 CrossRefPubMedGoogle Scholar
  46. Nam K, Ellegren H (2012) Recombination drives vertebrate genome contraction. PLoS Genet 8:e1002680. doi: 10.1371/journal.pgen.1002680 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Petrov DA (2002) Mutational equilibrium model of genome size evolution. Theor Popul Biol 61:531–544. doi: 10.1006/tpbi.2002.1605 CrossRefPubMedGoogle Scholar
  48. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842. doi: 10.1093/bioinformatics/btq033 CrossRefPubMedPubMedCentralGoogle Scholar
  49. R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
  50. Rice P, Longden I, Bleasby A (2000) EMBOSS: the European molecular biology open software suite. Trends Genet 16:2–3CrossRefGoogle Scholar
  51. Romanov MN, Farré M, Lithgow PE et al (2014) Reconstruction of gross avian genome structure, organization and evolution suggests that the chicken lineage most closely resembles the dinosaur avian ancestor. BMC Genom 15:1060. doi: 10.1186/1471-2164-15-1060 CrossRefGoogle Scholar
  52. Sanmiguel P, Tikhonov A, Jin Y et al (1996) Nested retrotransposons in the intergenic gegions of the maize genome. Science (80-)274:765–768CrossRefGoogle Scholar
  53. Sasaki M, Lange J, Keeney S (2010) Genome destabilization by homologous recombination in the germ line. Nat Rev Mol Cell Biol 11:182–195. doi: 10.1038/nrm2849 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Sniegowski PD, Charlesworth B (1994) Transposable element numbers in cosmopolitan inversions From a natural population of Drosophila melanogaster. Genetics 137:815–827PubMedPubMedCentralGoogle Scholar
  55. Sun C, Shepard DB, Chong RA et al (2012) LTR retrotransposons contribute to genomic gigantism in plethodontid salamanders. Genome Biol Evol 4:168–183. doi: 10.1093/gbe/evr139 CrossRefPubMedGoogle Scholar
  56. Tiley GP, Burleigh JG (2015) The relationship of recombination rate, genome structure, and patterns of molecular evolution across angiosperms. BMC Evol Biol 15:194. doi: 10.1186/s12862-015-0473-3 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Treangen TJ, Salzberg SL (2012) Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat Rev Genet 13:36–46. doi: 10.1038/nrg3117 Google Scholar
  58. Uno Y, Nishida C, Tarui H et al (2012) Inference of the protokaryotypes of amniotes and tetrapods and the evolutionary processes of microchromosomes from comparative gene mapping. PLoS One 7:2–13. doi: 10.1371/journal.pone.0053027 CrossRefGoogle Scholar
  59. Vitte C, Panaud O (2003) Formation of solo-LTRs through unequal homologous recombination counterbalances amplifications of LTR retrotransposons in rice Oryza sativa L. Mol Biol Evol 20:528–540. doi: 10.1093/molbev/msg055 CrossRefPubMedGoogle Scholar
  60. Waterhouse AM, Procter JB, Martin DMA et al (2009) Jalview Version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189–1191. doi: 10.1093/bioinformatics/btp033 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Wicker T, Robertson JS, Schulze SR et al (2005) The repetitive landscape of the chicken genome. Genome Res 15:126–136. doi: 10.1101/gr.2438005 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Wicker T, Sabot F, Hua-Van A et al (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982. doi: 10.1038/nrg2165 CrossRefPubMedGoogle Scholar
  63. Zhang G, Li C, Li Q et al (2014) Comparative genomics reveals insights into avian genome evolution and adaptation. Science (80-)346:1311–1320. doi: 10.1126/science.1251385 CrossRefPubMedCentralGoogle Scholar
  64. Zhou Q, Zhang J, Bachtrog D et al (2014) Complex evolutionary trajectories of sex chromosomes across bird taxa. Science (80-)346:1246338. doi: 10.1126/science.1246338 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Forestry and Natural ResourcesPurdue UniversityWest LafayetteUSA
  2. 2.Department of Biological SciencesPurdue UniversityWest LafayetteUSA

Personalised recommendations