Advertisement

Journal of Molecular Evolution

, Volume 82, Issue 2–3, pp 75–80 | Cite as

In Praise of Error

  • Günter Wächtershäuser
Letter to the Editor

Abstract

The methodological status of origin-of-life research as an experimental science, predicated on deductive logic, is assessed and illustrated by recent examples.

Keywords

Artifacts Dirt effects Formaldehyde Freeze-drying Soda ocean FeS-membranes 

References

  1. Baaske P, Weinert FM, Duhr S, Lemke KH, Russell MJ, Braun D (2007) Extreme accumulation of nucleotides in simulated hydrothermal pore systems. Proc Natl Acad Sci USA 104:9346–9351CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bada JL, Lazcano A (2002) Some like it hot, but not the first biomolecules. Science 296:1982–1983CrossRefPubMedGoogle Scholar
  3. Bernhardt HS, Tate WP (2012) Primordial soup or vinaigrette: did the RNA world evolve at acidic pH? Biol Direct 7:4CrossRefPubMedPubMedCentralGoogle Scholar
  4. Borowska Z, Mauzerall D (1988) Photoreduction of carbon dioxide by aqueous ferrous ion: an alternative to the strongly reducing atmosphere for the chemical origin of life. Proc Natl Acad Sci USA 85:6577–6580CrossRefPubMedPubMedCentralGoogle Scholar
  5. Borowska Z, Mauzerall D (1991) Retraction. Proc Natl Acad Sci USA 88:4564Google Scholar
  6. Branscomb E, Russell MJ (2013) Turnstiles and bifurcators: the disequilibrium converting engines that put metabolism on the road. Biochim Biophys A 1827:62–78CrossRefGoogle Scholar
  7. Crick F (1981) Life itself. Simon & Schuster, New YorkGoogle Scholar
  8. Dörr M, Käßbohrer J, Grunert R, Kreisel G, Brand WA, Werner RA, Geilmann H, Apfel C, Robl C, Weigand W (2003) A possible prebiotic formation of ammonia from dinitrogen on iron sulfide surfaces. Angew Chem Int Ed 42:1540–1543CrossRefGoogle Scholar
  9. Filtness MJ, Butler IB, Rickard D (2003) The origin of life: the properties of iron sulphide membranes. Trans Inst Min Metall Sect B 112:171–172Google Scholar
  10. Granick S (1957) Speculations on the origin and evolution of photosynthesis. Ann N Y Acad Sci 69:292–308CrossRefPubMedGoogle Scholar
  11. Griffin WL, Belousova EA, O’Neill C, O’Reilly SY, Malkovets V, Pearson NJ, Spetsius S, Wilde SA (2014) The world turns over: Hadean-Archaean crust-mantle evolution. Lithos 189:2–15CrossRefGoogle Scholar
  12. Grotzinger JP (1994) Trends in Precambrian carbonate sediments and their implication for understanding evolution. In: Bengtson S (ed) Early life on earth: Nobel symposium no. 84. Columbia University Press, New York, pp 245–258Google Scholar
  13. Heinen W, Lauwers AM (1996) Organic sulfur compounds resulting from the interaction of iron sulfide, hydrogen sulfide and carbon dioxide in an anaerobic aqueous environment. Orig Life Evol Biosph 26:131–150CrossRefPubMedGoogle Scholar
  14. Herschy B, Wicher A, Camprubi E, Watson C, Dartnell L, Ward J, Evans JRG, Lane N (2014) An origin-of-life reactor to simulate alkaline hydrothermal vents. J Mol Evol 79:213–227CrossRefPubMedPubMedCentralGoogle Scholar
  15. Järvinen P, Oivanen M, Lönnberg H (1991) Interconversion and phosphoester hydrolysis of 2′,5′- and 3′,5′-dinucleoside monophosphates: kinetics and mechanisms. J Org Chem 56:5396–5401CrossRefGoogle Scholar
  16. Kasting JF (1993) Earth’s early atmosphere. Science 259:920–926CrossRefPubMedGoogle Scholar
  17. Kemp AIS, Wilde SA, Hawkesworth CJ, Coath CD, Nemchin A, Pidgeon RT, Vervoort JD, DuFrane SA (2010) Hadean crustal evolution revisited: new constraints from Pb-Hf isotope systematics of the Jack Hills zircons. Earth Planet Sci Lett 296:45–56CrossRefGoogle Scholar
  18. Kempe S, Degens ET (1985) An early soda ocean? Chem Geol 53:95–108CrossRefGoogle Scholar
  19. Kempe S, Kazmierczak J, Degens ET (1989) The soda ocean concept and its bearing on biotic evolution. In: Crick RE (ed) Origin, evolution and modern aspects of biomineralization in plants and animals. Plenum Press, New York, pp 29–39CrossRefGoogle Scholar
  20. Koonin EV (2011) The logic of chance. Pearson Education, Upper Saddle RiverGoogle Scholar
  21. Koonin EV, Martin W (2005) On the origin of genomes and cells within inorganic compartments. Trends Genet 21:647–654CrossRefPubMedGoogle Scholar
  22. Kua J, Bada JL (2011) Primordial ocean chemistry and its compatibility with the RNA world. Orig Life Evol Biosph 41:553–558CrossRefPubMedGoogle Scholar
  23. Lane N (2010) Life ascending: the ten great inventions of evolution. W. W. Norton & Co, LondonGoogle Scholar
  24. Lane N (2015) The vital question. W. W. Norton & Co, LondonGoogle Scholar
  25. MacLeod G, McKeown C, Hall AJ, Russell MJ (1994) Hydrothermal and oceanic pH conditions of possible relevance to the origin of life. Orig Life Evol Biosph 24:19–41CrossRefPubMedGoogle Scholar
  26. Martin W, Russell MJ (2003) On the origin of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Philos Trans R Soc B 358:59–85CrossRefGoogle Scholar
  27. Mauzerall D, Borowska Z, Zielinski I (1993) Photo and thermal-reactions of ferrous hydroxide. Orig Life Evol Biosph 23:105–114CrossRefGoogle Scholar
  28. Mayr E (1982) The growth of biological thought. Harvard University Press, CambridgeGoogle Scholar
  29. McCollom TM (2013) Miller-Urey and beyond: what have we learned about prebiotic organic synthesis reactions in the past 60 years? Annu Rev Earth Planet Sci 41:207–229CrossRefGoogle Scholar
  30. Monod J (1974) Chance and necessity. Collins, Fontana Books, GlasgowCrossRefGoogle Scholar
  31. Morse JW, Mackenzie FT (1998) Hadean ocean carbonate geochemistry. Aquat Geochem 4:301–319CrossRefGoogle Scholar
  32. Popper KR (1959) The logic of scientific discovery. Hutchinson, LondonGoogle Scholar
  33. Popper KR (1972) Objective knowledge: an evolutionary approach. Clarendon Press, OxfordGoogle Scholar
  34. Rickard D, Luther GW III (2007) Chemistry of iron sulfides. Chem Rev 107:514–562CrossRefPubMedGoogle Scholar
  35. Russell MJ (2007) The alkaline solution to the emergence of life: energy, entropy and early evolution. Acta Biotheor 55:133–179CrossRefPubMedGoogle Scholar
  36. Russell MJ, Arndt NT (2005) Geodynamic and metabolic cycles in the Hadean. Biogeosciences 2:97–111CrossRefGoogle Scholar
  37. Russell MJ, Hall AJ (1997) The emergence of life from iron monosulfide bubbles at a submarine hydrothermal redox and pH front. J Geol Soc London 154:377–402CrossRefPubMedGoogle Scholar
  38. Russell MJ, Hall AJ, Turner D (1989) In vitro growth of iron sulphide chimneys; possible culture chambers for origin-of-life experiments. Terra Nova 1:238–241CrossRefGoogle Scholar
  39. Russell MJ, Daniel RM, Hall AJ (1993) On the emergence of life via catalytic iron-sulphide membranes. Terra Nova 5:343–347CrossRefGoogle Scholar
  40. Russell MJ, Daniel RM, Hall AJ, Sherringham JA (1994) A hydrothermally precipitated catalytic iron sulphide membrane as a first step toward life. J Mol Evol 39:231–243CrossRefGoogle Scholar
  41. Russell MJ, Daia DE, Hall AJ (1998) The emergence of life from FeS bubbles at alkaline hot springs in an acid ocean. In: Wiegel J, Adams MWW (eds) Thermophiles: the keys to molecular evolution and the origin of life. Taylor & Francis, Washington, pp 77–126Google Scholar
  42. Russell MJ, Hall AJ, Martin W (2010) Serpentinization as a source of energy at the origin of life. Geobiology 8:355–371CrossRefPubMedGoogle Scholar
  43. Sousa FL, Thiergart T, Landan G, Nelson-Sathi S, Pereira IAC, Allen JF, Lane N, Martin WF (2013) Early bioenergetic evolution. Philos Trans R Soc B 368:20130088CrossRefGoogle Scholar
  44. Sukumaran PV (2000) Evolution oft the atmosphere and oceans: evidence from the geological records. Resonance 5:4–12CrossRefGoogle Scholar
  45. Wächtershäuser G (1988) Before enzymes and templates: theory of surface metabolism. Microbiol Rev 52:452–484PubMedPubMedCentralGoogle Scholar
  46. Wächtershäuser G (1990) Evolution of the first metabolic cycles. Proc Natl Acad Sci USA 87:200–204CrossRefPubMedPubMedCentralGoogle Scholar
  47. Wächtershäuser G (1992) Groundworks for an evolutionary biochemistry: the iron–sulphur world. Prog Biophys Mol Biol 58:85–201CrossRefPubMedGoogle Scholar
  48. Wächtershäuser G (2007) On the chemistry and evolution of the pioneer organism. Chem Biodivers 4:584–602CrossRefPubMedGoogle Scholar
  49. Wächtershäuser G (2012) Origin of life: RNA World versus autocatalytic anabolist. In: Rosenberg E et al (eds) The prokaryotes. Springer, BerlinGoogle Scholar
  50. Walker JCG (1985) Carbon dioxide on the early Earth. Orig Life 16:117–127CrossRefGoogle Scholar
  51. Wilde SA, Valley JW, Peck WH, Graham CM (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the earth 4.4 Gyr ago. Nature 409:175–178CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.MunichGermany

Personalised recommendations