Journal of Molecular Evolution

, Volume 81, Issue 5–6, pp 146–149 | Cite as

Reflections of a Darwinian Engineer

Mini Review

References

  1. Bartel DP, Szostak JW (1993) Isolation of new ribozymes from a large pool of random sequences. Science 261:1411–1417CrossRefPubMedGoogle Scholar
  2. Beaudry AA, Joyce GF (1992) Directed evolution of an RNA enzyme. Science 257:635–641CrossRefPubMedGoogle Scholar
  3. Bock LC, Griffin LC, Latham JA, Vermaas EH, Toole JJ (1992) Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 355:564–566CrossRefPubMedGoogle Scholar
  4. Cadwell RC, Joyce GF (1992) Randomization of genes by PCR mutagenesis. PCR Methods Appl 2:28–33CrossRefPubMedGoogle Scholar
  5. Connell GJ, Illangesekare M, Yarus M (1993) Three small ribooligonucleotides with specific arginine sites. Biochemistry 32:5497–5502CrossRefPubMedGoogle Scholar
  6. Ekland EH, Bartel DP (1996) RNA-catalysed RNA polymerization using nucleoside triphosphates. Nature 382:373–376CrossRefPubMedGoogle Scholar
  7. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822CrossRefPubMedGoogle Scholar
  8. Famulok M, Szostak JW (1992) Stereospecific recognition of tryptophan agarose by in vitro selected RNA. J Am Chem Soc 114:3990–3991CrossRefGoogle Scholar
  9. Garbesi A, Capobianco ML, Colonna FP, Tondelli L, Arcamone F, Manzini G, Hilbers CW, Aelen JM, Blommers MJ (1993) L-DNAs as potent antimessenger oligonucleotides: a reassessment. Nucleic Acids Res 21:4159–4165PubMedCentralCrossRefPubMedGoogle Scholar
  10. Gilbert W (1986) The RNA world. Nature 319:618CrossRefGoogle Scholar
  11. Guatelli JC, Whitfield KM, Kwoh DY, Barringer KJ, Richman DD, Gingeras TR (1990) Isothermal, in vitro amplification of nucleic acids by a multienzyme reaction modeled after retroviral replication. Proc Natl Acad Sci USA 87:1874–1878PubMedCentralCrossRefPubMedGoogle Scholar
  12. Jellinek D, Lynott CK, Rifkin DB, Janjić N (1993) High-affinity RNA ligands to basic fibroblast growth factor inhibit receptor binding. Proc Natl Acad Sci USA 90:11227–11231PubMedCentralCrossRefPubMedGoogle Scholar
  13. Joyce GF (1989) Amplification, mutation, and selection of catalytic RNA. Gene 82:83–87CrossRefPubMedGoogle Scholar
  14. Joyce GF (1999) The counterforce. Curr Biol 9:R500–R501CrossRefPubMedGoogle Scholar
  15. Joyce GF, Inoue T (1989) A novel technique for the rapid preparation of mutant RNAs. Nucleic Acids Res 17:711–722PubMedCentralPubMedGoogle Scholar
  16. Kunkel TA, Schaaper RM, Loeb LA (1983) Depurination-induced infidelity of deoxyribonucleic acid synthesis with purified deoxyribonucleic acid replication proteins in vitro. Biochemistry 22:2378–2384CrossRefPubMedGoogle Scholar
  17. Lin Y, Qiu Q, Gill SC, Jayasena SD (1994) Modified RNA sequence pools in in vitro selection. Nucleic Acids Res 22:5229–5234PubMedCentralCrossRefPubMedGoogle Scholar
  18. Lincoln TA, Joyce GF (2009) Self-sustained replication of an RNA enzyme. Science 323:1229–1232PubMedCentralCrossRefPubMedGoogle Scholar
  19. Mills DR, Peterson RL, Spiegelman S (1967) An extracellular Darwinian experiment with a self-duplicating nucleic acid molecule. Proc Natl Acad Sci USA 58:217–224PubMedCentralCrossRefPubMedGoogle Scholar
  20. Oliphant AR, Nussbaum AL, Struhl K (1986) Cloning of random-sequence oligodeoxynucleotides. Gene 44:177–183CrossRefPubMedGoogle Scholar
  21. Pinheiro V, Taylor A, Cozens C, Abramov M, Renders M, Zhang S, Chaput JC, Wengel J, Peak-Chew S, McLaughlin S, Herdewijn P, Holliger P (2012) Synthetic genetic polymers capable of heredity and evolution. Science 336:341–344PubMedCentralCrossRefPubMedGoogle Scholar
  22. Pynchon T (1973) Gravity’s rainbow. Viking Press, New YorkGoogle Scholar
  23. Robertson DL, Joyce GF (1990) Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 344:467–468CrossRefPubMedGoogle Scholar
  24. Sczepanski JT, Joyce GF (2013) Binding of a structured D-RNA molecule by an L-RNA aptamer. J Am Chem Soc 35:13290–13293CrossRefGoogle Scholar
  25. Sczepanski JT, Joyce GF (2014) A cross-chiral RNA polymerase ribozyme. Nature 515:440–442PubMedCentralCrossRefPubMedGoogle Scholar
  26. Shearman CW, Loeb LA (1983) On the fidelity of DNA replication: specificity of nucleotide substitution by intercalating agents. J Biol Chem 258:4477–4484PubMedGoogle Scholar
  27. Tarasow TM, Tarasow SL, Eaton BE (1997) RNA-catalysed carbon–carbon bond formation. Nature 389:54–57CrossRefPubMedGoogle Scholar
  28. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510CrossRefPubMedGoogle Scholar
  29. Wells JA, Vasser M, Powers DB (1985) Cassette mutagenesis: an efficient method for generation of multiple mutations at defined sites. Gene 34:315–323CrossRefPubMedGoogle Scholar
  30. Wochner A, Attwater J, Coulson A, Holliger P (2011) Ribozyme-catalyzed transcription of an active ribozyme. Science 332:209–212CrossRefPubMedGoogle Scholar
  31. Wright MC, Joyce GF (1997) Continuous in vitro evolution of catalytic function. Science 276:614–617CrossRefPubMedGoogle Scholar
  32. Yu H, Zhang S, Chaput JC (2012) Darwinian evolution of an alternative genetic system provides support for TNA as an RNA progenitor. Nat Chem 4:183–187CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Chemistry and The Skaggs Institute for Chemical BiologyThe Scripps Research InstituteLa JollaUSA

Personalised recommendations