Journal of Molecular Evolution

, Volume 79, Issue 1–2, pp 40–51 | Cite as

Control Region Length Dynamics Potentially Drives Amino Acid Evolution in Tarsier Mitochondrial Genomes

  • Stefan Merker
  • Sarah Thomas
  • Elke Völker
  • Dyah Perwitasari-Farajallah
  • Barbara Feldmeyer
  • Bruno Streit
  • Markus Pfenninger
Original Article

Abstract

Patterns and processes of molecular evolution critically influence inferences in phylogeny and phylogeography. Within primates, a shift in evolutionary rates has been identified as the rationale for contrasting findings from mitochondrial and nuclear DNA studies as to the position of Tarsius. While the latter now seems settled, we sequenced complete mitochondrial genomes of three Sulawesi tarsiers (Tarsius dentatus, T. lariang, and T. wallacei) and analyzed substitution rates among tarsiers and other primates to infer driving processes of molecular evolution. We found substantial length polymorphism of the D-loop within tarsier individuals, but little variation of predominant lengths among them, regardless of species. Length variation was due to repetitive elements in the CSB domain—minisatellite motifs of 35 bp length and microsatellite motifs of 6 bp length. Amino acid evolutionary rates were second highest among major primate taxa relative to nucleotide substitution rates. We observed many radical possibly function-altering amino acid changes that were rarely driven by positive selection and thus potentially slightly deleterious or neutral. We hypothesize that the observed pattern of an increased amino acid evolutionary rate in tarsier mitochondrial genomes may be caused by hitchhiking of slightly deleterious mutations with favored D-loop length variants selected for maximizing replication success within the cell or the mitochondrion.

Keywords

Heteroplasmy Multilevel selection Primates Sulawesi Tandem repeats Tarsius 

Supplementary material

239_2014_9631_MOESM1_ESM.pdf (2.1 mb)
Supplementary material 1 (PDF 2149 kb)
239_2014_9631_MOESM2_ESM.pdf (6 kb)
Supplementary material 2 (PDF 6 kb)
239_2014_9631_MOESM3_ESM.pdf (6 kb)
Supplementary material 3 (PDF 6 kb)
239_2014_9631_MOESM4_ESM.pdf (6 kb)
Supplementary material 4 (PDF 5 kb)
239_2014_9631_MOESM5_ESM.pdf (2.5 mb)
Supplementary material 5 (PDF 2520 kb)
239_2014_9631_MOESM6_ESM.pdf (7 kb)
Supplementary material 6 (PDF 6 kb)
239_2014_9631_MOESM7_ESM.pdf (7 kb)
Supplementary material 7 (PDF 6 kb)
239_2014_9631_MOESM8_ESM.pdf (49 kb)
Supplementary material 8 (PDF 49 kb)
239_2014_9631_MOESM9_ESM.pdf (82 kb)
Supplementary material 9 (PDF 82 kb)

References

  1. Adkins RM, Honeycutt RL, Disotell TR (1996) Evolution of eutherian cytochrome c oxidase subunit II: heterogeneous rates of protein evolution and altered interaction with cytochrome c. Mol Biol Evol 13:1393–1404CrossRefPubMedGoogle Scholar
  2. Andrews TD, Easteal S (2000) Evolutionary rate acceleration of cytochrome c oxidase subunit I in simian primates. J Mol Evol 50:562–568PubMedGoogle Scholar
  3. Andrews TD, Jermiin LS, Easteal S (1998) Accelerated evolution of cytochrome b in simian primates: adaptive evolution in concert with other mitochondrial proteins? J Mol Evol 47:249–257CrossRefPubMedGoogle Scholar
  4. Arnason E, Rand DM (1992) Heteroplasmy of short tandem repeats in mitochondrial DNA of Atlantic cod, Gadusmorhua. Genetics 132:211–220PubMedCentralPubMedGoogle Scholar
  5. Arnason U, Adegoke JA, Bodin K, Born EW, Esa YB et al (2002) Mammalian mitogenomic relationships and the root of the eutherian tree. Proc Natl Acad Sci USA 99:8151–8156PubMedCentralCrossRefPubMedGoogle Scholar
  6. Bridle JR, Garn A-K, Monk KA, Butlin RK (2001) Speciation in Chitaura grasshoppers (Acrididae: Oxyinae) on the island of Sulawesi: colour patterns, morphology and contact zones. Biol J Linn Soc 72:373–390CrossRefGoogle Scholar
  7. Buroker NE, Brown JR, Gilbert TA, O’Hara PJ, Beckenbach AT et al (1990) Length heteroplasmy of sturgeon mitochondrial DNA: an illegitimate elongation model. Genetics 124:157–163PubMedCentralPubMedGoogle Scholar
  8. Casane D, Dennebouy N, de Rochambeau H, Mounolou JC, Monnerot M (1997) Nonneutral evolution of tandem repeats in the mitochondrial DNA control region of lagomorphs. Mol Biol Evol 14:779–789CrossRefPubMedGoogle Scholar
  9. Chatterjee HJ, Ho SYW, Barnes I, Groves C (2009) Estimating the phylogeny and divergence times of primates using a super matrix approach. BMC Evol Biol 9:259PubMedCentralCrossRefPubMedGoogle Scholar
  10. da Fonseca RR, Johnson WE, O’Brien SJ, Ramos MJ, Antunes A (2008) The adaptive evolution of the mammalian mitochondrial genome. BMC Genomics 9:119PubMedCentralCrossRefPubMedGoogle Scholar
  11. Damuth J (1981) Population density and body size in mammals. Nature 290:699–700CrossRefGoogle Scholar
  12. Damuth J (1991) Of size and abundance. Nature 351:268–269CrossRefGoogle Scholar
  13. Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, et al (2011) Geneious v5.4. http://www.geneious.com. Accessed 30 Dec 2013
  14. Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973PubMedCentralCrossRefPubMedGoogle Scholar
  15. Efstratiadis A, Posakony JW, Maniatis T, Lawn RM, O’Connell C et al (1980) The structure and evolution of the human β-globin gene family. Cell 21:653–668CrossRefPubMedGoogle Scholar
  16. Eizirik E, Murphy WJ, O’Brien SJ (2001) Molecular dating and biogeography of the early placental mammal radiation. J Hered 92:212–219CrossRefPubMedGoogle Scholar
  17. Evans BJ, Brown RM, McGuire JA, Supriatna J, Andayani N et al (2003a) Phylogenetics of fanged frogs: testing biogeographical hypotheses at the interface of the Asian and Australian faunal zones. Syst Biol 52:794–819PubMedGoogle Scholar
  18. Evans BJ, Supriatna J, Andayani N, Melnick DJ (2003b) Diversification of Sulawesi macaque monkeys: decoupled evolution of mitochondrial and autosomal DNA. Evolution 57:1931–1946CrossRefPubMedGoogle Scholar
  19. Evans BJ, Supriatna J, Andayani N, Setiadi MI, Cannatella DC et al (2003c) Monkeys and toads define areas of endemism on Sulawesi. Evolution 57:1436–1443CrossRefPubMedGoogle Scholar
  20. Faber JE, Stepien CA (1998) Tandemly repeated sequences in the mitochondrial DNA control region and phylogeography of the Pike-Perches Stizostedion. Mol Phylogenet Evol 10:310–322CrossRefPubMedGoogle Scholar
  21. Fabre PH, Rodrigues A, Douzery EJP (2009) Patterns of macroevolution among Primates inferred from a supermatrix of mitochondrial and nuclear DNA. Mol Phylogenet Evol 53:808–825CrossRefPubMedGoogle Scholar
  22. Fumagalli L, Taberlet P, Favre L, Hausser J (1996) Origin and evolution of homologous repeated sequences in the mitochondrial DNA control region of shrews. Mol Biol Evol 13:31–46CrossRefPubMedGoogle Scholar
  23. Ghivizzani SC, Mackay SL, Madsen CS, Laipis PJ, Hauswirth WW (1993) Transcribed heteroplasmic repeated sequences in the porcine mitochondrial DNA D-loop region. J Mol Evol 37:36–47CrossRefPubMedGoogle Scholar
  24. Goodman M, Porter CA, Czelusniak J, Page SL, Schneider H et al (1998) Toward a phylogenetic classification of primates based on DNA evidence complemented by fossil evidence. Mol Phylogenet Evol 9:585–598CrossRefPubMedGoogle Scholar
  25. Grant JR, Stothard P (2008) The CGView Server: a comparative genomics tool for circular genomes. Nucleic Acids Res 36:W181–W184PubMedCentralCrossRefPubMedGoogle Scholar
  26. Groves C, Shekelle M (2010) The genera and species of Tarsiidae. Int J Primatol 31:1071–1082CrossRefGoogle Scholar
  27. Hall R (2001) Cenozoic reconstructions of SE Asia and the SW Pacific: changing patterns of land and sea. In: Metcalfe I, Smith JMB, Morwood M, Davidson I (eds) Faunal and floral migrations and evolution in SE Asia-Australasia. A.A. Balkema, Lisse, pp 35–56Google Scholar
  28. Hartig G, Churakov G, Warren WC, Brosius J, Makałowski W, Schmitz J (2013) Retrophylogenomics place tarsiers on the evolutionary branch of anthropoids. Sci Rep 3:1756PubMedCentralCrossRefPubMedGoogle Scholar
  29. Hasegawa M, Kishino H, Hayasaka K, Horai S (1990) Mitochondrial DNA evolution in primates: transition rate has been extremely low in the lemur. J Mol Evol 31:113–121CrossRefPubMedGoogle Scholar
  30. Hayasaka K, Gojobori T, Horai S (1988) Molecular phylogeny and evolution of primate mitochondrial DNA. Mol Biol Evol 5:626–644PubMedGoogle Scholar
  31. Hoelzel AR, Lopez JV, Dover GA, O’Brien SJ (1994) Rapid evolution of a heteroplasmic repetitive sequence in the mitochondrial DNA control region of carnivores. J Mol Evol 39:191–199PubMedGoogle Scholar
  32. Inoue JG, Miya M, Tsukamoto K, Nishida M (2001) Complete mitochondrial DNA sequence of Conger myriaster (Teleostei: Anguilliformes): novel gene order for vertebrate mitochondrial genomes and the phylogenetic implications for anguilliform families. J Mol Evol 52:311–320PubMedGoogle Scholar
  33. Jameson NM, Hou Z-C, Sterner KN, Weckle A, Goodman M et al (2011) Genomic data reject the hypothesis of a prosimian primate clade. J Hum Evol 61:295–305CrossRefPubMedGoogle Scholar
  34. Levinson G, Gutman GA (1987) Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol 4:203–221PubMedGoogle Scholar
  35. Lohman DJ, de Bruyn M, Page T, von Rintelen K, Hall R et al (2011) Biogeography of the Indo-Australian Archipelago. Annu Rev Ecol Evol Syst 42:205–226CrossRefGoogle Scholar
  36. Matsui A, Rakotondraparany F, Munechika I, Hasegawa M, Horai S (2009) Molecular phylogeny and evolution of prosimians based on complete sequences of mitochondrial DNAs. Gene 441:53–66CrossRefPubMedGoogle Scholar
  37. Melin AD, Matsushita Y, Moritz GL, Dominy NJ, Kawamura S (2013) Inferred L/M cone opsin polymorphism of ancestral tarsiers sheds dim light on the origin of anthropoid primates. Proc R Soc Lond B Biol Sci 280:20130189CrossRefGoogle Scholar
  38. Mercer JM, Roth VL (2003) The effects of Cenozoic global change on squirrel phylogeny. Science 299:1568–1572CrossRefPubMedGoogle Scholar
  39. Meredith RW, Janečka JE, Gatesy J, Ryder OA, Fisher CA et al (2011) Impacts of the Cretaceous Terrestrial Revolution and KPg extinction on mammal diversification. Science 334:521–524CrossRefPubMedGoogle Scholar
  40. Merker S (2006) Habitat-specific ranging patterns of Dian’s tarsiers (Tarsius dianae) as revealed by radiotracking. Am J Primatol 68:111–125CrossRefPubMedGoogle Scholar
  41. Merker S, Groves CP (2006) Tarsius lariang: a new primate species from Western Central Sulawesi. Int J Primatol 27:465–485CrossRefGoogle Scholar
  42. Merker S, Driller C, Perwitasari-Farajallah D, Pamungkas J, Zischler H (2009) Elucidating geological and biological processes underlying the diversification of Sulawesi tarsiers. Proc Natl Acad Sci USA 106:8459–8464PubMedCentralCrossRefPubMedGoogle Scholar
  43. Merker S, Driller C, Dahruddin H, Wirdateti, Sinaga W et al (2010) Tarsius wallacei: a new tarsier species from central Sulawesi occupies a discontinuous range. Int J Primatol 31:1107–1122Google Scholar
  44. Mignotte F, Gueride M, Champagne AM, Mounolou JC (1990) Direct repeats in the non-coding region of rabbit mitochondrial DNA. Involvement in the generation of intra- and inter-individual heterogeneity. Eur J Biochem 194:561–571CrossRefPubMedGoogle Scholar
  45. Murphy WJ, Eizirik E, Johnson WE, Zhang YP, Ryder OA et al (2001) Molecular phylogenetics and the origins of placental mammals. Nature 409:614–618CrossRefPubMedGoogle Scholar
  46. Ohta T (1973) Slightly deleterious mutant substitutions in evolution. Nature 246:96–98CrossRefPubMedGoogle Scholar
  47. Page SL, Goodman M (2001) Catarrhine phylogeny: noncoding DNA evidence for a diphyletic origin of the mangabeys and for a human-chimpanzee clade. Mol Phylogenet Evol 18:14–25CrossRefPubMedGoogle Scholar
  48. Pereira F, Soares P, Carneiro J, Pereira L, Richards MB et al (2008) Evidence for variable selective pressures at a large secondary structure of the human mitochondrial DNA control region. Mol Biol Evol 25:2759–2770CrossRefPubMedGoogle Scholar
  49. Perelman P, Johnson WE, Roos C, Seuánez HN, Horvath JE et al (2011) A molecular phylogeny of living primates. PLoS Genet 7:e1001342PubMedCentralCrossRefPubMedGoogle Scholar
  50. Pfenninger M, Bugert M (2001) Dynamic microsatellites in transcribed regions of gastropod mitochondrial 16S rDNA. Genome 44:163–166CrossRefPubMedGoogle Scholar
  51. Popadin K, Polishchuk LV, Mamirova L, Knorre D, Gunbin K (2007) Accumulation of slightly deleterious mutations in mitochondrial protein-coding genes of large versus small mammals. Proc Natl Acad Sci USA 104:13390–13395PubMedCentralCrossRefPubMedGoogle Scholar
  52. Popadin KY, Nikolaev SI, Junier T, Baranova M, Antonarakis SE (2013) Purifying selection in mammalian mitochondrial protein-coding genes is highly effective and congruent with evolution of nuclear genes. Mol Biol Evol 30:347–355CrossRefPubMedGoogle Scholar
  53. Poux C, Douzery EJP (2004) Primate phylogeny, evolutionary rate variations, and divergence times: a contribution from the nuclear gene IRBP. Am J Phys Anthropol 124:1–16CrossRefPubMedGoogle Scholar
  54. Rand DM (1993) Endotherms, ectotherms, and mitochondrial genome-size variation. J Mol Evol 37:281–295CrossRefPubMedGoogle Scholar
  55. Rand DM (2001) The units of selection on mitochondrial DNA. Annu Rev Ecol Syst 32:415–448CrossRefGoogle Scholar
  56. Rand DM, Harrison RG (1989) Molecular population genetics of mtDNA size variation in crickets. Genetics 121:551–569PubMedCentralPubMedGoogle Scholar
  57. Rayko E, Goursot R, Cherif-Zahar B, Melis R, Bernardi G (1988) Regions flanking ori sequences affect the replication efficiency of the mitochondrial genome of ori+ petite mutants from yeast. Gene 63:213–226CrossRefPubMedGoogle Scholar
  58. Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386Google Scholar
  59. Saccone C, Pesole G, Sbisá E (1991) The main regulatory region of mammalian mitochondrial DNA: structure–function model and evolutionary pattern. J Mol Evol 33:83–91CrossRefPubMedGoogle Scholar
  60. Sbisà E, Tanzariello F, Reyes A, Pesole G, Saccone C (1997) Mammalian mitochondrial D-loop region structural analysis: identification of new conserved sequences and their functional and evolutionary implications. Gene 205:125–140CrossRefPubMedGoogle Scholar
  61. Schattner P, Brooks AN, Lowe TM (2005) The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res 33:W686–W689PubMedCentralCrossRefPubMedGoogle Scholar
  62. Schmitz J, Ohme M, Zischler H (2001) SINE insertions in cladistic analyses and the phylogenetic affiliations of Tarsius bancanus to other primates. Genetics 157:777–784PubMedCentralPubMedGoogle Scholar
  63. Schmitz J, Ohme M, Zischler H (2002) The complete mitochondrial sequence of Tarsius bancanus: evidence for an extensive nucleotide compositional plasticity of primate mitochondrial DNA. Mol Biol Evol 19:544–553CrossRefPubMedGoogle Scholar
  64. Shekelle M, Leksono SM (2004) Strategi konservasi di Pulau Sulawesi dengan menggunakan Tarsius sebagai flagship species [Conservation strategy in Sulawesi Island using Tarsius as flagship species]. Biota 9:1–10Google Scholar
  65. Shekelle M, Groves C, Merker S, Supriatna J (2008a) Tarsius tumpara: a new tarsier species from Siau Island, North Sulawesi. Primate Conserv 23:55–64CrossRefGoogle Scholar
  66. Shekelle M, Morales JC, Niemitz C, Ichwan LL, Melnick D (2008b) Distribution of tarsier haplotypes for some parts of northern and central Sulawesi. In: Shekelle M, Maryanto I, Groves C, Schulze H, Fitch-Snyder H (eds) Primates of the oriental night. LIPI Press, Jakarta, pp 51–69Google Scholar
  67. Shekelle M, Meier R, Wahyu I, Ting N (2010) Molecular phylogenetics and chronometrics of Tarsiidae based on 12S mtDNA haplotypes: evidence for Miocene origins of crown tarsiers and numerous species within the Sulawesian clade. Int J Primatol 31:1083–1106CrossRefGoogle Scholar
  68. Springer MS, Meredith RW, Gatesy J, Emerling CA, Park J et al (2012) Macroevolutionary dynamics and historical biogeography of primate diversification inferred from a species supermatrix. PLoS One 7:e49521PubMedCentralCrossRefPubMedGoogle Scholar
  69. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCentralCrossRefPubMedGoogle Scholar
  70. Wai T, Teoli D, Shoubridge EA (2008) The mitochondrial DNA genetic bottleneck results from replication of a subpopulation of genomes. Nat Genet 40:1484–1488CrossRefPubMedGoogle Scholar
  71. Werle E, Schneider C, Renner M, Völker M, Fiehn W (1994) Convenient single-step, one tube purification of PCR products for direct sequencing. Nucleic Acids Res 22:4354–4355PubMedCentralCrossRefPubMedGoogle Scholar
  72. White EP, Morgan Ernest SK, Kerkhoff AJ, Enquist BJ (2007) Relationships between body size and abundance in ecology. Trends Ecol Evol 22:323–330CrossRefPubMedGoogle Scholar
  73. Wilkinson GS, Chapman AM (1991) Length and sequence variation in evening bat D-loop mtDNA. Genetics 128:607–617PubMedCentralPubMedGoogle Scholar
  74. Wilkinson GS, Mayer F, Kerth G, Petri B (1997) Evolution of repeated sequence arrays in the D-loop region of bat mitochondrial DNA. Genetics 146:1035–1048PubMedCentralPubMedGoogle Scholar
  75. Woolley S, Johnson J, Smith MJ, Crandall KA, McClellan DA (2003) TreeSAAP: selection on amino acid properties using phylogenetic trees. Bioinformatics 19:671–672CrossRefPubMedGoogle Scholar
  76. Wu PC, Chen JB, Kawamura S, Roos C, Merker S et al (2012) The IgE gene in primates exhibits extraordinary evolutionary diversity. Immunogenetics 64:279–287CrossRefPubMedGoogle Scholar
  77. Yang Z (2007) PAML 4: a program package for phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591CrossRefPubMedGoogle Scholar
  78. Zietkiewicz E, Richer C, Labuda D (1999) Phylogenetic affinities of tarsier in the context of primate Alu repeats. Mol Phylogenet Evol 11:77–83CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Stefan Merker
    • 1
    • 2
  • Sarah Thomas
    • 2
  • Elke Völker
    • 2
  • Dyah Perwitasari-Farajallah
    • 3
  • Barbara Feldmeyer
    • 4
  • Bruno Streit
    • 2
  • Markus Pfenninger
    • 5
  1. 1.Department of ZoologyState Museum of Natural History StuttgartStuttgartGermany
  2. 2.Evolutionary Ecology GroupGoethe University Frankfurt/M.Frankfurt/M.Germany
  3. 3.Primate Research CenterBogor Agricultural UniversityBogorIndonesia
  4. 4.Department of Evolutionary BiologyJohannes-Gutenberg University MainzMainzGermany
  5. 5.Molecular Ecology GroupBiodiversity and Climate Research Centre (BiK-F) by Senckenberg Gesellschaft für Naturforschung and Goethe-UniversityFrankfurt/M.Germany

Personalised recommendations