Thermodynamic Prediction of Glycine Polymerization as a Function of Temperature and pH Consistent with Experimentally Obtained Results

Abstract

Prediction of the thermodynamic behaviors of biomolecules at high temperature and pressure is fundamental to understanding the role of hydrothermal systems in the origin and evolution of life on the primitive Earth. However, available thermodynamic dataset for amino acids, essential components for life, cannot represent experimentally observed polymerization behaviors of amino acids accurately under hydrothermal conditions. This report presents the thermodynamic data and the revised HKF parameters for the simplest amino acid “Gly” and its polymers (GlyGly, GlyGlyGly and DKP) based on experimental thermodynamic data from the literature. Values for the ionization states of Gly (Gly+ and Gly) and Gly peptides (GlyGly+, GlyGly, GlyGlyGly+, and GlyGlyGly) were also retrieved from reported experimental data by combining group additivity algorithms. The obtained dataset enables prediction of the polymerization behavior of Gly as a function of temperature and pH, consistent with experimentally obtained results in the literature. The revised thermodynamic data for zwitterionic Gly, GlyGly, and DKP were also used to estimate the energetics of amino acid polymerization into proteins. Results show that the Gibbs energy necessary to synthesize a mole of peptide bond is more than 10 kJ mol−1 less than previously estimated over widely various temperatures (e.g., 28.3 kJ mol−1 → 17.1 kJ mol−1 at 25 °C and 1 bar). Protein synthesis under abiotic conditions might therefore be more feasible than earlier studies have shown.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Amend JP, Helgeson HC (1997) Calculation of the standard molal thermodynamic properties of aqueous biomolecules at elevated temperatures and pressures. Part 1. L-α-amino acids. J Chem Soc Farad Trans 93:1927–1941

    CAS  Article  Google Scholar 

  2. Amend JP, Helgeson HC (2000) Calculation of the standard molal thermodynamic properties of aqueous biomolecules at elevated temperatures and pressures. II. Unfolded proteins. Biophys Chem 84:105–136

    CAS  Article  PubMed  Google Scholar 

  3. Amend JP, McCollom TM (2009) Energetics of biomolecule synthesis on early earth. In: Zaikowski L, Friedrich JM, Seidel SR (eds) Chemical evolution II: from the origins of life to modern society. Am Chem Soc Symp Ser, Oxford University Press, pp 63–94

    Google Scholar 

  4. Amend JP, Shock EL (1998) Energetics of amino acid synthesis in hydrothermal ecosystems. Science 281:1659–1662

    CAS  Article  PubMed  Google Scholar 

  5. Amend JP, LaRowe DE, McCollom TM, Shock EL (2013) The energetics of organic synthesis inside and outside the cell. Phil Trans R Soc B 368:1–15

    Article  Google Scholar 

  6. Baross JA, Hoffman SE (1985) Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life. Orig Life 15:327–345

    CAS  Article  Google Scholar 

  7. Berthelot MPE, Andre G (1891) Chaleur de combustion des principaux composes azotes contenus dans les etres vivants et son role dans la production de la chaleur animale. Ann Chem Phys 22:25–52

    Google Scholar 

  8. Borsook H (1953) Peptide bond formation. Adv Protein Chem 8:127–174

    CAS  Article  PubMed  Google Scholar 

  9. Clarke RG, Hnedkovsky L, Tremaine PR, Majer V (2000) Amino acids under hydrothermal conditions: apparent molar heat capacities of aqueous α-alanine, β-alanine, glycine, and proline at temperatures from 298 to 500 K. J Phys Chem B 104:11781–11793

    CAS  Article  Google Scholar 

  10. Clarke RGF, Collins CM, Roberts JC, Trevani LN, Bartholomew RJ, Tremaine PR (2005) Ionization constants of aqueous amino acids at temperatures up to 250°C using hydrothermal pH indicators and UV–visible spectroscopy: glycine, α-alanine, and proline. Geochim Cosmochim Acta 69:3029–3043

    CAS  Article  Google Scholar 

  11. Cox JD, Wagman DD, Medvedev VA (1989) COVATA Key Values for Thermodynamics. Hemisphere Publishing Corporation, New York

    Google Scholar 

  12. Diaz EL, Domalski ES, Colbert JC (1992) Enthalpies of combustion of glycylglycine and Dl-alanyl-Dl-alanine. J Chem Thermodyn 24:1311–1318

    CAS  Article  Google Scholar 

  13. Dick JM, LaRowe DE, Helgeson HC (2006) Temperature, pressure, and electrochemical constraints on protein speciation: group additivity calculation of the standard molal thermodynamic properties of ionized unfolded proteins. Biogeosci 3:311–336

    CAS  Article  Google Scholar 

  14. Dorofeeva OV, Ryzhova ON (2009) Revision of standard molar enthalpies of formation of glycine and l-alanine in the gaseous phase based on theoretical calculations. J Chem Thermodyn 41:433–438

    CAS  Article  Google Scholar 

  15. Douville E, Charlou JL, Oelkers EH, Bienvenu P, Colon CFJ, Donval JP, Fouquet Y, Prieur D, Appriou P (2002) The rainbow vent fluids (36°14′N, MAR): the influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids. Chem Geol 184:37–48

    CAS  Article  Google Scholar 

  16. Downes CJ, Hakin AW, Hedwig GR (2001) The partial molar heat capacities of glycine and glycylglycine in aqueous solution at elevated temperatures and at p = 10.0 MPa. J Chem Thermodyn 33:873–890

    CAS  Article  Google Scholar 

  17. Faisal M, Sato N, Quitain AT, Daimon H, Fujie K (2005) Hydrolysis and cyclodehydration of dipeptide under hydrothermal conditions. Ind Eng Chem Res 44:5472–5477

    CAS  Article  Google Scholar 

  18. Fasman GD (1976) CRC Handbook of biochemistry and molecular biology 3rd edn, vol 1. Physical and Chemical Data. Boca Raton: CRC Press

  19. Gillespie SE, Oscarson JL, Izatt RM, Wang P, Renuncio JAR, Pando C (1995) Thermodynamic quantities for the protonation of amino acid amino groups from 323.15 to 398.15 K. J Soc Chem 24:1219–1247

    CAS  Google Scholar 

  20. Goldberg RN, Kishore N, Lennen RM (2002) Thermodynamic quantities for the ionization reactions of buffers. J Phys Chem Ref Data 31:231–370

    CAS  Article  Google Scholar 

  21. Hakin AW, Duke MM, Klassen SA, McKay TM, Preuss KE (1994) Apparent molar heat capacities and volume of some aqueous solutions of aliphatic amino acids at 288.15, 298.15, 313.15, and 328.15 K. Can J Chem 72:362–368

    CAS  Article  Google Scholar 

  22. Hakin AW, Hoiland H, Hedwig GR (2000a) Volumetric properties of some oligopeptides in aqueous solution: partial molar expansibilities and isothermal compressibilities at 298.15 K for the peptides of sequence Ala(gly) n , n = 1–4. Phys Chem Chem Phys 2:4850–4857

    CAS  Article  Google Scholar 

  23. Hakin AW, Kowalchuck MG, Liu JL, Marriott RA (2000b) Thermodynamics of protein model compounds: apparent and partial molar heat capacities and volumes of several cyclic dipeptides in water. J Sol Chem 29:131–151

    CAS  Article  Google Scholar 

  24. Hamborg ES, Niederer JPM, Versteeg GF (2007) Dissociation constants and thermodynamic properties of amino acids used in CO2 absorption from (293 to 353) K. J Chem Eng Data 52:2491–2502

    CAS  Article  Google Scholar 

  25. Helgeson HC, Kirkham DH, Flowers GC (1981) Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures: IV. Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600°C and 5 kb. Am J Sci 1249–1516

  26. Helgeson HC, Kirkham DH (1974) Thermodynamical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures: I. Summary of the thermodynamic/electrostatic properties of the solvent. Am J Sci 274:1089–1198

    Google Scholar 

  27. Helgeson HC, Owens CE, Knox AM, Richard L (1998) Calculation of the standard molal thermodynamic properties of crystalline, liquid, and gas organic molecules at high temperature and pressures. Geochim Cosmochim Acta 62:985–1081

    CAS  Article  Google Scholar 

  28. Huber C, Wachtershauser G (2006) α-hydroxy and α-amino acids under possible hadean, volcanic origin-of-life conditions. Science 314:630–632

    CAS  Article  PubMed  Google Scholar 

  29. Hutchens JO, Cole AG, Stout JW (1960) Heat capacities from 11 to 305°K and entropies of L-alanine and glycine. J Am Chem Soc 82:4813–4815

    CAS  Article  Google Scholar 

  30. Hutchens JO, Cole AG, Stout JW (1963) Heat capacities from 11 to 305°K, enthropies, and free energies of formation of l-valine, l-isoleucine, and l-leucine. J Phys Chem 67:1128–1130

    CAS  Article  Google Scholar 

  31. Imai E, Honda H, Hatori K, Brack A, Matsuno K (1999) Elongation of oligopeptides in a simulated submarine hydrothermal systems. Science 283:831–833

    CAS  Article  PubMed  Google Scholar 

  32. Kelley DS, Karson JA, Blackman DK, Fruh-Green GL, Butterfield DA, Lilley MD, Olson EJ, Schrenk MO, Roe KK, Lebon GT, Rivizzigno P, The AT3-60 Shipboard Party (2001) An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30°N. Nature 412:145–149

    CAS  Article  PubMed  Google Scholar 

  33. Kelley DS, Karson JA, Fruh-Green GL, Yoerger DR, Shank TM, Butterfield DA, Hayes JM, Schrenk MO, Olson EJ, Proskurowski G, Jakuba M, Bradley A, Larson B, Ludwig K, Glickson D, Buckman K, Bradley AS, Brazelton WJ, Roe K, Elend MJ, Delacour A, Bernasconi SM, Lilley MD, Baross JA, Summons RE, Sylva SP (2005) A serpentine-hosted ecosystem: the lost city hydrothermal field. Science 307:1428–1434

    CAS  Article  PubMed  Google Scholar 

  34. King EJ (1957) The thermodynamics of ionization of amino acids. IV. The first ionization constants of some glycine peptides. J Am Chem Soc 79:6151–6156

    CAS  Article  Google Scholar 

  35. King EJ (1975) Thermodynamics of ionization of amino acids. Part 6. The second ionization constants of some glycine peptides. J Chem Soc Farad Trans 71:88–96

    CAS  Article  Google Scholar 

  36. Kochergina LA, Emel’yanov AV (2011) Effect of temperature on thermodynamic characteristics of the dissociation of glycylglycine in aqueous solutions of electrolytes. Russ J Phys Chem A 85:1742–1747

    CAS  Article  Google Scholar 

  37. LaRowe DE, Dick JM (2012) Calculation of the standard molal thermodynamic properties of crystalline peptides. Geochim Cosmochim Acta 80:70–91

    CAS  Article  Google Scholar 

  38. LaRowe DE, Van Cappellen P (2011) Degradation of natural organic matter: a thermodynamic analysis. Geochim Cosmochim Acta 75:2030–2042

    CAS  Article  Google Scholar 

  39. Lemke KH, Rosenbauer RJ, Bird DK (2009) Peptide synthesis in early earth hydrothermal systems. Astrobiology 9:141–146

    CAS  Article  PubMed  Google Scholar 

  40. Makhatadze GI, Gill SJ, Privalov PL (1990) Partial molar heat capacities of the side chains of some amino acid residues in aqueous solution. The influence of the neighboring charges. Biophys Chem 38:33–37

    CAS  Article  PubMed  Google Scholar 

  41. Marriott RA, Hakin AW, Liu JL, Lutter E (2001) The volumetric properties of aqueous solutions of glycylglycine and l-serine at elevated temperatures and pressures. J Chem Thermodyn 33:959–982

    CAS  Article  Google Scholar 

  42. Marshall WL (1994) Hydrothermal synthesis of amino acids. Geochim Cosmochim Acta 58:2099–2106

    CAS  Article  Google Scholar 

  43. Martin W, Baross J, Kelley D, Russell MJ (2008) Hydrothermal vents and the origin of life. Nature Rev Microbiol 6:805–814

    CAS  Google Scholar 

  44. McCollom TM, Seewald JS (2007) Abiotic synthesis of organic compounds in deep-sea hydrothermal environments. Chem Rev 107:382–401

    CAS  Article  PubMed  Google Scholar 

  45. Mitsuzawa S, Yukawa T (2004) A reaction network for triglycine synthesis under hydrothermal conditions. Bull Chem Soc Jpn 77:965–973

    CAS  Article  Google Scholar 

  46. Qian Y, Engel MH, Macko SA, Carpenter S, Deming JW (1993) Kinetics of peptide hydrolysis and amino acid decomposition at high temperature. Geochim Cosmochim Acta 57:3281–3293

    CAS  Article  PubMed  Google Scholar 

  47. Qiu X, Lei Q, Fang W, Lin R (2009) Transfer enthalpies of amino acids and glycine peptides from water to aqueous solutions of sugar alcohol at 298.15 K. J Chem Eng Data 54:1426–1429

    CAS  Article  Google Scholar 

  48. Reysenbach AL, Shock E (2002) Merging genomes with geochemistry in hydrothermal ecosystems. Science 296:1077–1082

    CAS  Article  PubMed  Google Scholar 

  49. Sakata K, Kitadai N, Yokoyama T (2010) Effects of pH and temperature on dimerization rate of glycine: evaluation of favorable environmental conditions for chemical evolution of life. Geochim Cosmochim Acta 74:6841–6851

    CAS  Article  Google Scholar 

  50. Shock EL (1992a) Stability of peptides in high-temperature aqueous solutions. Geochim Cosmochim Acta 56:3481–3491

    CAS  Article  Google Scholar 

  51. Shock EL (1992b) Calculation of the thermodynamic properties of aqueous species at high pressures and temperatures. J Chem Soc Farad Trans 88:803–826

    CAS  Article  Google Scholar 

  52. Shock E, Canovas P (2010) The potential for abiotic organic synthesis and biosynthesis at seafloor hydrothermal systems. Geofluids 10:161–192

    CAS  Google Scholar 

  53. Shock EL, Schulte MD (1998) Organic synthesis during fluid mixing in hydrothermal systems. J Geophys Res 103:28513–28527

    CAS  Article  Google Scholar 

  54. Shock EL, Sassani DC, Willis M, Sverjensky DA (1997) Inorganic species in geologic fluids: correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes. Geochim Cosmochim Acta 61:907–950

    CAS  Article  PubMed  Google Scholar 

  55. Smith ERB, Smith PK (1942) Thermodynamic properties of solution of amino acids and related substances. VIII. The ionization of glycylglycine, ε-aminocaproic acid, and aspartic acid in aqueous solution from one to fifty degrees. J Biol Chem 146:187–195

    CAS  Google Scholar 

  56. Takai K, Nakamura K, Suzuki K, Inogaki F, Nealson KH, Kumagai H (2006) Ultramafics–hydrothermalism–hydrogenesis–hyperSLiME (UltraH3) linkage: a key insight into early microbial ecosystem in the Archean deep-sea hydrothermal systems. Paleontol Res 10:269–282

    Article  Google Scholar 

  57. Tanger JC, Helgeson HC (1988) Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: revised equations of state for the standard partial molal properties of ions and electrolytes. Am J Sci 288:19–98

    CAS  Article  Google Scholar 

  58. Tivey MK (2007) Generation of seafloor hydrothermal vent fluids and associated mineral deposits. Oceanography 20:50–65

    Article  Google Scholar 

  59. Tsuzuki T, Harper DO, Hunt H (1958) Heats of combustion. VI I. Heats of combustion of some amino acids. J Phys Chem 62:1594–1595

    CAS  Article  Google Scholar 

  60. Ueno Y, Yamada K, Yoshida N, Maruyama S, Isozaki Y (2006) Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era. Nature 440:516–519

    CAS  Article  PubMed  Google Scholar 

  61. Venkatesu P, Lee MJ, Lin HM (2007) Densities of aqueous solutions containing model compounds of amino acids and ionic salts at T = 298.15 K. J Chem Thermodynamics 39:1206–1216

    CAS  Article  Google Scholar 

  62. Wang P, Oscarson JL, Gillespie SE, Izatt RM, Cao H (1996) Thermodynamics of protonation of amino acid carboxylate groups from 50 to 125°C. J Soc Chem 25:243–266

    CAS  Google Scholar 

  63. Ziemer SP, Niederhauser TL, Merkley ED, Price JL, Sorenson EC, McRae BR, Patterson BA, Origlia-Luster ML, Woolley EM (2006) Thermodynamics of proton dissociations from aqueous glycine at temperatures from 278.15 to 393.15 K, molalities from 0 to 1.0 mol kg−1, and at the pressure 0.35 MPa: apparent molar heat capacities and apparent molar volumes of glycine, glycinium chloride, and sodium glycinate. J Chem Thermodyn 38:467–483

    CAS  Article  Google Scholar 

Download references

Acknowledgments

I greatly appreciate two anonymous referees and an associated editor for their careful reviews of this manuscript. This research was financially supported by a JSPS Research Fellowship for Young Scientists to NK.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Norio Kitadai.

Appendices

Appendix 1

In this appendix, the author summarizes the revised HKF equations of state and the thermodynamic conventions adopted in this study. Further detailed information for the calculation methodology is available in Amend and Helgeson (1997) and Dick et al. (2006).

Standard State Conventions

The standard state convention adopted for H2O is unit activity of the pure solvent at any temperature and pressure. The convention for other aqueous species corresponds to unit activity of the species in a hypothetical one molal solution referenced to infinite dilution at any temperature and pressure. The conventional standard molal thermodynamic properties of a charged aqueous species are given as the following.

$$\Xi = \Xi^{\text{abs}} - Z\Xi_{{H^{ + } }}^{\text{abs}}$$
(21)

Therein, Ξ and Ξ abs, respectively, stand for any conventional and absolute standard molal property of the aqueous species of interest, and \(\Xi_{{H^{ + } }}^{\text{abs}}\) denotes the corresponding absolute standard molal property of the hydrogen ion. Also, Z represents the charge of the aqueous species of interest.

The standard molal Gibbs energies (∆G °) and enthalpies (∆H °) of aqueous species are expressed as apparent standard molal Gibbs energies and enthalpies of formation, which are defined as

$$\Delta H^{^\circ } \equiv \Delta_{f} H^{{^{^\circ } }} + \left( {H_{P,T}^{{^{^\circ } }} - H_{{P_{\text{r}} ,T_{\text{r}} }}^{{^{^\circ } }} } \right)$$
(22)

and

$$\Delta G^{^\circ } \equiv \Delta_{f} G^{{^{^\circ } }} + \left( {G_{P,T}^{{^{^\circ } }} - G_{{P_{\text{r}} ,T_{\text{r}} }}^{{^{^\circ } }} } \right)$$
(23)

where f G ° and f H ° represent the standard molal Gibbs energy and enthalpy of formation of the species from the elements at the reference temperature (T r = 298.15 K) and pressure (P r = 1 bar), and where \(G_{P,T}^{{^{^\circ } }} - G_{{P_{\text{r}} ,T_{\text{r}} }}^{{^{^\circ } }}\) and \(H_{P,T}^{{^{^\circ } }} - H_{{P_{\text{r}} ,T_{\text{r}} }}^{{^{^\circ } }}\), respectively, denote the differences between the standard molal Gibbs energy and enthalpy at the temperature (T) and pressure (P) of interest, and those at T r and P r.

The values of f G ° and f H ° and the standard molal entropy at 25 °C and 1 bar (\(S_{{P_{\text{r}} ,T_{\text{r}} }}^{{^{^\circ } }}\)) are related by the following.

$$\Delta G_{f}^{{^{^\circ } }} = \Delta H_{f}^{{^{^\circ } }} - T_{\text{r}} \left( {S_{{P_{\text{r}} ,T_{\text{r}} }}^{{^{^\circ } }} - S_{{P_{\text{r}} , T_{\text{r}} , {\text{elements}}}}^{{^{^\circ } }} } \right)$$
(24)

In that equation, \(S_{{P_{\text{r}} , T_{\text{r}} , {\text{elements}}}}^{{^{^\circ } }}\) represents the total standard molal entropy at 25 °C and 1 bar of the elements making up the species of interest. The values of \(S_{{P_{\text{r}} ,T_{\text{r}} }}^{{^{^\circ } }}\) of the elements used in this study were referred from a report by Cox et al. (1989).

Summary of the Revised HKF Equation of State

The revised HKF equations of state are consistent with the separation of variables represented as shown below.

$$\Xi = \Delta \Xi_{n} + \Delta \Xi_{s}$$
(25)

Therein, Ξ stands for any standard molal property of an aqueous species. In addition, ∆Ξ n and ∆Ξ s , respectively, refer to the nonsolvation and solvation contributions to Ξ.

The nonsolvation contributions to the standard molal isobaric heat capacity (C ° P ), volume (V °), and isothermal compressibility (κ °T ) of an aqueous species (\(\Delta C_{P,n}^{{^{^\circ } }}\), \(\Delta V_{n}^{{^{^\circ } }}\), and \(\Delta \kappa_{T,n}^{{^{^\circ } }}\), respectively) are given in the literature (Tanger and Helgeson 1988) as

$$\Delta C_{P,n}^{{^{^\circ } }} = c_{1} + \frac{{c_{2} }}{{\left( {T - \Theta } \right)^{2} }} - \left( {\frac{2T}{{\left( {T - \Theta } \right)^{3} }}} \right)\left( {a_{3} \left( {P - P_{\text{r}} } \right) + a_{4} \ln \left( {\frac{\Psi + P}{{\Psi + P_{\text{r}} }}} \right)} \right)$$
(26)
$$\Delta V_{n}^{o} = a_{1} + \frac{{a_{2} }}{\Psi + P} - \left( {a_{3} + \frac{{a_{4} }}{\Psi + P}} \right)\left( {\frac{1}{T - \Theta }} \right)$$
(27)

and

$$\Delta \kappa_{T,n}^{{^{^\circ } }} = \left( {a_{2} + \frac{{a_{4} }}{T - \varTheta }} \right)\left( {\frac{1}{\varPsi + P}} \right)^{2}$$
(28)

where a 1, a 2, a 3, a 4, c 1, and c 2 represent temperature-independent and pressure-independent parameters of the species of interest, and where Θ and Ψ, respectively, represent solvent parameters equal to 228 K and 2,600 bar.

The solvation contributions to C ° P , V °, and\(\kappa_{T}^{o}\) are expressed as

$$\Delta C_{P,s}^{{^{^\circ } }} = \omega TX + 2TY\left( {\frac{\partial \omega }{\partial T}} \right)_{P} - T\left( {\frac{1}{\epsilon } - 1} \right)\left( {\frac{{\partial^{2} \omega }}{{\partial T^{2} }}} \right)_{P}$$
(29)
$$\Delta V_{s}^{{^{^\circ } }} = \omega Q + \left( {\frac{1}{\epsilon } - 1} \right)\left( {\frac{\partial \omega }{\partial P}} \right)_{T}$$
(30)

and

$$\Delta \kappa_{T,s}^{{^{^\circ } }} = \omega N + 2Q\left( {\frac{\partial \omega }{\partial P}} \right)_{T} - \left( {\frac{1}{\epsilon } - 1} \right)\left( {\frac{{\partial^{2} \omega }}{{\partial P^{2} }}} \right)_{T}$$
(31)

where ω denotes the solvation parameter of the species of interest, \(\epsilon\) stands for the dielectric constant of H2O, and Q, N, Y, and X designate the Born functions defined, respectively, as \(- \left( {\frac{{\partial \left( {1/\epsilon } \right)}}{\partial P}} \right)_{T}\), \(\left( {\frac{\partial Q}{\partial P}} \right)_{T}\), \(- \left( {\frac{{\partial \left( {1/epsilon } \right)}}{\partial T}} \right)_{P}\), and \(\left( {\frac{\partial Y}{\partial T}} \right)_{P}\). The values of Q, X, and Y used in this study were taken from Shock et al. (1992b), but those of N correspond to the values reported by Tanger and Helgeson (1988). The partial derivatives of ω with respect to temperature and pressure are taken as

$$\left( {\frac{\partial \omega }{\partial T}} \right)_{P} = \left( {\frac{\partial \omega }{\partial P}} \right)_{T} = \left( {\frac{{\partial^{2} \omega }}{{\partial T^{2} }}} \right)_{P} = \left( {\frac{{\partial^{2} \omega }}{{\partial P^{2} }}} \right)_{T} = 0$$
(32)

for all the neutral and charged groups and species considered below (Amend and Helgeson 1997, 2000; Dick et al. 2006).

At P ≈ Pr, Eq. 26 reduces to the equation shown below.

$$\Delta C_{P,n}^{{^{^\circ } }} = c_{1} { + }\frac{{c_{2} }}{{\left( {T - \varTheta } \right)^{2} }}$$
(33)

Contributions by the pressure-dependent terms are negligible for pressures less than a few hundred bars (Dick et al. 2006). Eq. 27 can be written as

$$\Delta V_{n}^{{^{^\circ } }} = \sigma + \frac{\xi }{T - \varTheta }$$
(34)

by defining the parameters σ and ξ as

$$\sigma \equiv a_{1} + \frac{{a_{2} }}{\varPsi + p}$$
(35)

and the following expression.

$$\xi \equiv a_{3} + \frac{{a_{4} }}{\varPsi + P}$$
(36)

By taking account of Eqs. 25 and 32 together with Eqs. 29 and 33 for C ° P or Eqs. 30 and 34 for V °, it is possible to write

$$C_{P}^{{^{^\circ } }} = c_{1} + \frac{{c_{2} }}{{\left( {T - \varTheta } \right)^{2} }} + \omega TX$$
(37)

and the following.

$$V^{o} = \sigma + \frac{\xi }{T - \varTheta } - \omega Q$$
(38)

The revised HKF equations of state for ∆G °, ∆H °, and S ° can be written as (Tanger and Helgeson 1988)

$$\begin{gathered} \Delta G^{o} =\, \Delta G_{f}^{o} - S_{{P_{r} ,T_{r} }}^{o} \left( {T - T_{r} } \right) - c_{1} \left[ {T\ln \left( {\frac{T}{{T_{r} }}} \right) - T + T_{r} } \right] - c_{2} \left\{ {\left[ {\left( {\frac{1}{T - \varTheta }} \right) - \left( {\frac{1}{{T_{r} - \varTheta }}} \right)} \right]\left( {\frac{\varTheta - T}{\varTheta }} \right)} \right\} \hfill \\ + c_{2} \left\{ {\frac{T}{{\varTheta^{2} }}\ln \left[ {\frac{{T_{r} \left( {T - \varTheta } \right)}}{{T\left( {T_{r} - \varTheta } \right)}}} \right]} \right\} + a_{1} \left( {P - P_{r} } \right) + a_{2} \ln \left( {\frac{\varPsi + P}{{\varPsi + P_{r} }}} \right) + \left( {\frac{1}{T + \varTheta }} \right)\left[ {a_{3} \left( {P - P_{r} } \right) + a_{4} \ln \left( {\frac{\varPsi + P}{{\varPsi + P_{r} }}} \right)} \right] \hfill \\ + \omega \left( {\frac{1}{\epsilon } - 1} \right) - \omega_{{P_{r} ,T_{r} }} \left[ {Y_{{P_{r} ,T_{r} }} \left( {T_{r} - T} \right) + \frac{1}{{\epsilon_{{P_{r} ,T_{r} }} }} - 1} \right] \hfill \\ \end{gathered}$$
(39)
$$\begin{gathered} \Delta H^{o} = \Delta H_{f}^{o} + c_{1} \left( {T - T_{r} } \right) - c_{2} \left[ {\left( {\frac{1}{T - \varTheta }} \right) - \left( {\frac{1}{{T_{r} - \varTheta }}} \right)} \right] + a_{1} \left( {P - P_{r} } \right) + \hfill \\ a_{2} \ln \left( {\frac{\varPsi + P}{{\varPsi + P_{r} }}} \right) + \left[ {\frac{2T - \varTheta }{{\left( {T - \varTheta } \right)^{2} }}} \right]\left[ {a_{3} \left( {P - P_{r} } \right) + a_{4} \ln \left( {\frac{\varPsi + P}{{\varPsi + P_{r} }}} \right)} \right] + \hfill \\ \omega \left( {TY + \frac{1}{\epsilon } - 1} \right) - T\left( {\frac{1}{\epsilon } - 1} \right)\left( {\frac{\partial \omega }{\partial T}} \right)_{P} - \omega_{{P_{r} ,T_{r} }} \left( {T_{r} Y_{{P_{r} ,T_{r} }} + \frac{1}{{\epsilon_{{P_{r} ,T_{r} }} }} - 1} \right) \hfill \\ \end{gathered}$$
(40)

and

$$\begin{gathered} S^{o} =\, S_{{P_{r} ,T_{r} }}^{o} + c_{1} \ln \left( {\frac{T}{{T_{r} }}} \right) - \frac{{c_{2} }}{\varTheta }\left\{ {\left( {\frac{1}{T - \varTheta }} \right) - \left( {\frac{1}{{T_{r} - \varTheta }}} \right) + \frac{1}{\varTheta }\ln \left[ {\frac{{T_{r} \left( {T - \varTheta } \right)}}{{T\left( {T_{r} - \varTheta } \right)}}} \right]} \right\} + \hfill \\ \left( {\frac{1}{T - \varTheta }} \right)^{2} \left[ {a_{3} \left( {P - P_{r} } \right) + a_{4} \ln \left( {\frac{\varPsi + P}{{\varPsi + P_{r} }}} \right)} \right] + \omega Y - \left( {\frac{1}{\epsilon } - 1} \right)\left( {\frac{\partial \omega }{\partial T}} \right)_{P} - \omega_{{P_{r} ,T_{r} }} Y_{{P_{r} ,T_{r} }} \hfill \\ \end{gathered}$$
(41)

respectively.

Appendix 2

See Fig. 10.

Fig. 10
figure10

Experimental (symbols) and calculated (curves) standard molal heat capacity (C ° P ) of Gly± as a function of temperature. No error bar is shown in this figure because the reported uncertainties are less than the symbol size

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kitadai, N. Thermodynamic Prediction of Glycine Polymerization as a Function of Temperature and pH Consistent with Experimentally Obtained Results. J Mol Evol 78, 171–187 (2014). https://doi.org/10.1007/s00239-014-9616-1

Download citation

Keywords

  • Abiotic organic synthesis
  • Origin of life
  • Prebiotic evolution