Journal of Molecular Evolution

, Volume 76, Issue 5, pp 267–279 | Cite as

Evolutionary Analysis and Lateral Gene Transfer of Two-Component Regulatory Systems Associated with Heavy-Metal Tolerance in Bacteria

Original Article

Abstract

Microorganisms have adapted intricate signal transduction mechanisms to coordinate tolerance to toxic levels of metals, including two-component regulatory systems (TCRS). In particular, both cop and czc operons are regulated by TCRS; the cop operon plays a key role in bacterial tolerance to copper, whereas the czc operon is involved in the efflux of cadmium, zinc, and cobalt from the cell. Although the molecular physiology of heavy metal tolerance genes has been extensively studied, their evolutionary relationships are not well-understood. Phylogenetic relationships among heavy-metal efflux proteins and their corresponding two-component regulatory proteins revealed orthologous and paralogous relationships from species divergences and ancient gene duplications. The presence of heavy metal tolerance genes on bacterial plasmids suggests these genes may be prone to spread through horizontal gene transfer. Phylogenetic inferences revealed nine potential examples of lateral gene transfer associated with metal efflux proteins and two examples for regulatory proteins. Notably, four of the examples suggest lateral transfer across major evolutionary domains. In most cases, differences in GC content in metal tolerance genes and their corresponding host genomes confirmed lateral gene transfer events. Three-dimensional protein structures predicted for the response regulators encoded by cop and czc operons showed a high degree of structural similarity with other known proteins involved in TCRS signal transduction, which suggests common evolutionary origins of functional phenotypes and similar mechanisms of action for these response regulators.

Keywords

Cop Czc Heavy-metal tolerance Horizontal gene transfer Phylogenetics 

Supplementary material

239_2013_9558_MOESM1_ESM.doc (168 kb)
Supplementary material 1 (DOC 168 kb)

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  2. Barbieri CM, Mack TR, Robinson VL, Miller MT, Stock AM (2010) Regulation of response regulator autophosphorylation through interdomain contacts. J Biol Chem 285(42):32325–32335PubMedCrossRefGoogle Scholar
  3. Barkay T, Olson BH (1986) Phenotypic and genotypic adaptation of aerobic heterotrophic sediment bacterial communities to mercury stress. Appl Environ Microbiol 52:403–406PubMedGoogle Scholar
  4. Bouzat JL, McNeil LK, Robertson HM, Solter LF, Nixon J, Beever JE, Gaskins HR, Olsen G, Subramaniam S, Sogin ML, Lewin HA (2000) Phylogenomic analysis of the α-proteasome gene family from early-diverging eukaryotes. J Mol Evol 51:532–543PubMedGoogle Scholar
  5. Brown NL, Lee BTO, Silver S (1994) Bacterial transport of and resistance to copper. Met Ions Biol Syst 30:405–430Google Scholar
  6. Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 45:198–207PubMedCrossRefGoogle Scholar
  7. Buckler DR, Zhou Y, Stock AM (2002) Evidence of intradomain and interdomain flexibility in an OmpR/PhoB homolog from Thermotoga maritima. Structure 10:153–164PubMedCrossRefGoogle Scholar
  8. Caille O, Rossier C, Perron K (2007) A copper-activated two-component system interacts with zinc and imipenem resistance in Pseudomonas aeruginosa. J Bacteriol 189(13):4561–4568PubMedCrossRefGoogle Scholar
  9. Cha JS, Cooksey DA (1991) Copper resistance in Pseudomonas syringae mediated by periplasmic and outer membrane proteins. PNAS 88(20):8915–8919PubMedCrossRefGoogle Scholar
  10. Cooksey DA (1994) Molecular mechanisms of copper resistance and accumulation in bacteria. FEMS Microbiol Rev 14(4):381–386Google Scholar
  11. Cooksey DA, Azad HR (1992) Accumulation of copper and other metals by copper-resistant plant-pathogenic and saprophytic pseudomonads. Appl Environ Microbiol 58(1):274–278PubMedGoogle Scholar
  12. Coombs JM, Barkay T (2004) Molecular evidence for the evolution of metal homeostasis genes by lateral gene transfer in bacteria from the deep terrestrial subsurface. Appl Environ Microbiol 70(3):698–707CrossRefGoogle Scholar
  13. Cullen JJ, Neale PJ (1994) Ultraviolet radiation, ozone depletion, and marine photosynthesis. Photosynth Res 39:303–320CrossRefGoogle Scholar
  14. Da Pelo S, Musu E, Cidu R, Frau F, Lattanzi P (2009) Release of toxic elements from rocks and mine wastes at the Furtei gold mine (Sardinia, Italy). J Geochem Explor 100(2–3):142–152CrossRefGoogle Scholar
  15. De la Cruz F, Davies J (2000) Horizontal gene transfer and the origin of species: lessons from bacteria. Trends Microbiol 8(3):128–133PubMedCrossRefGoogle Scholar
  16. Diels L, Dong Q, van der Lelie D, Baeyens W, Mergeay M (1995) The czc operon of Alcaligenes eutrophus CH34: from resistance mechanism to removal of heavy metals. J Ind Microbiol 14(2):142–153PubMedCrossRefGoogle Scholar
  17. Doolittle WF (1999) Phylogenetic classification and the universal tree. Science 284:2124–2129PubMedCrossRefGoogle Scholar
  18. Eisen JA (1998) Phylogenomics: improving functional predictions for uncharacterized genes by evolutionary analysis. Genome Res 8:163–167PubMedGoogle Scholar
  19. Eisen JA (2000) Horizontal gene transfer among microbial genomes: new insights from complete genome analysis. Curr Opin Genet Dev 10(6):606–611PubMedCrossRefGoogle Scholar
  20. Eisen JA, Wu M (2002) Phylogenetic analysis and gene functional predictions: phylogenomics in action. Theor Popul Biol 61:481–487PubMedCrossRefGoogle Scholar
  21. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4):783–791CrossRefGoogle Scholar
  22. Fong S, Camakaris J, Lee BTO (1995) Molecular genetics of a chromosomal locus involved in copper tolerance in Escherichia coli K-12. Mol Microbiol 15(6):1127–1137PubMedCrossRefGoogle Scholar
  23. Friedland N, Mack TR, Yu M, Hung LW, Terwilliger TC, Waldo GS, Stock AM et al (2007) Domain orientation in the inactive response regulator Mycobacterium tuberculosis MtrA provides a barrier to activation. Biochemistry 46(23):6733–6743PubMedCrossRefGoogle Scholar
  24. Gandlur SM, Wei L, Levine J, Russell J, Kaur P (2004) Membrane topology of the DrrB protein of the doxorubicin transporter of Streptomyces peucetius. J Biol Chem 279:27799–27806PubMedCrossRefGoogle Scholar
  25. Gao R, Mack TR, Stock AM (2007) Bacterial response regulators: versatile regulatory strategies from common domains. TIBS 32(5):226–234Google Scholar
  26. Goldberg M, Pribyl T, Juhnke S, Nies DH (1999) Energetics and topology of CzcA, a cation/proton antiporter of the resistance-nodulation-cell division protein family. J Biol Chem 274:26065–26070PubMedCrossRefGoogle Scholar
  27. Goodnight CJ (1990) Experimental studies of community evolution II: the ecological basis of the response to community selection. Evolution 44:1625–1636CrossRefGoogle Scholar
  28. Grass G, Grobe C, Nies DH (2000) Regulation of the cnr cobalt/nickel resistance determinant from Ralstonia sp. CH34. J Bacteriol 182:1390–1398PubMedCrossRefGoogle Scholar
  29. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-Pdb Viewer: an environment for comparative protein modeling. Electrophoresis 18(15):2714–2723PubMedCrossRefGoogle Scholar
  30. Gupta SD, Wu HC, Rick PD (1997) A Salmonella typhimurium genetic locus which confers copper tolerance on copper-sensitive mutants of Escherichia coli. J Bacteriol 179(16):4977–4984PubMedGoogle Scholar
  31. Halliwell B, Gutteridge JM (1985) The importance of free radicals and catalytic metal ions in human diseases. Mol Aspects Med 8:89–193PubMedCrossRefGoogle Scholar
  32. Hoostal MJ, Bouzat JL (2008) The modulating role of dissolved organic matter on spatial patterns of microbial metabolism in Lake Erie sediments. Microb Ecol 55:358–368PubMedCrossRefGoogle Scholar
  33. Hoostal MJ, Bidart-Bouzat MG, Bouzat JL (2008) Local adaptation of microbial communities to heavy metal stress in polluted sediments of Lake Erie. FEMS Microbiol Ecol 65:156–168PubMedCrossRefGoogle Scholar
  34. Hoshino N, Kimura T, Yamaji A, Ando T (1999) Damage to the cytoplasmic membrane of Escherichia coli by catechin–copper (II) complexes. Free Radic Biol Med 27:1245–1250PubMedCrossRefGoogle Scholar
  35. Hotopp JCD, Clark ME, Oliveira DCSG, Foster JM, Fischer P, Muñoz Torres MC, Giebel JD et al (2007) Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science 317:1753–1756CrossRefGoogle Scholar
  36. Huston W, Jennings MP, McEwan AG (2002) The multicopper oxidase of Pseudomonas aeruginosa is a ferroxidase essential for iron acquisition. Mol Microbiol 45(6):1741–1750PubMedCrossRefGoogle Scholar
  37. Jain R, Rivera MC, Lake JA (1999) Horizontal gene transfer among genomes: the complexity hypothesis. PNAS 96(7):3801–3806Google Scholar
  38. Jain R, Rivera MC, Moore JE, Lake JA (2002) Horizontal gene transfer in microbial genome evolution. Theor Popul Biol 61:489–495PubMedCrossRefGoogle Scholar
  39. Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. CABIOS 8:275–282PubMedGoogle Scholar
  40. King-Scott J, Nowak E, Mylonas E, Panjikar S, Roessle M, Svergun DI, Tucker PA (2007) The structure of a full-length response regulator from Mycobacterium tuberculosis in a stabilized three-dimensional domain-swapped, activated state. J Biol Chem 282(52):37717–37729PubMedCrossRefGoogle Scholar
  41. Kopp J, Schwede T (2004) The SWISS-MODEL Repository of annotated three-dimensional protein structure homology models. Nucleic Acids Res 32:D230–D234PubMedCrossRefGoogle Scholar
  42. Koretke KK, Lupas AN, Warren PV, Rosenberg M, Brown JR (2000) Evolution of two-component signal transduction. Mol Biol Evol 17(12):1956–1970PubMedCrossRefGoogle Scholar
  43. Lafay B, Lloyd AT, McLean MJ, Devine KM, Sharp PM, Wolfe KH (1999) Proteome composition and codon usage in spirochaetes: species-specific and DNA strand-specific mutational biases. Nucleic Acids Res 27:1642–1649PubMedCrossRefGoogle Scholar
  44. Lawrence JG, Ochman H (1998) Molecular archaeology of the Escherichia coli genome. PNAS 95:9413–9417PubMedCrossRefGoogle Scholar
  45. Lee YA, Hendson M, Panopoulos NJ, Schroth MN (1994) Molecular cloning, chromosomal mapping, and sequence analysis of copper resistance genes from Xanthomonas campestris pv. juglandis: homology with small blue copper proteins and multicopper oxidase. J Bacteriol 176:173–188PubMedGoogle Scholar
  46. Legatzki A, Franke S, Lucke S, Hoffmann T, Anton A, Neumann D, Nies DH (2003) First step towards a quantitative model describing Czc-mediated heavy metal resistance in Ralstonia metallidurans. Biodegradation 14:153–168PubMedCrossRefGoogle Scholar
  47. Li Y, Zeng J, Zhang H, He ZG (2010) The characterization of conserved binding motifs and potential target genes for M. tuberculosis MtrAB reveals a link between the two-component system and the drug resistance of M. smegmatis. BMC Microbiol 10:242PubMedCrossRefGoogle Scholar
  48. Liesgang H, Lemke K, Siddiqui RA, Schlegel HG (1993) Characterization of the inducible nickel and cobalt resistance determinant cnr from pMOL28 of Alcaligenes eutrophus CH34. J Bacteriol 175(3):767–768Google Scholar
  49. Mellano MA, Cooksey DA (1988) Nucleotide sequence and organization of copper resistance genes from Pseudomonas syringae pv. tomato. J Bacteriol 170(6):2879–2883PubMedGoogle Scholar
  50. Muller AK, Rasmussen LD, Sorensen SJ (2001) Adaptation of the bacterial community to mercury contamination. FEMS Microbiol Lett 16:49–53CrossRefGoogle Scholar
  51. Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New YorkGoogle Scholar
  52. Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27:313–339PubMedCrossRefGoogle Scholar
  53. Nies DH (2004a) Essential and toxic effects of elements on microorganisms. In: Anke K, Ihnat M, Stoeppler M (eds) Metals and their compounds in the environment. Wiley-VCH, Weinheim (part II.1)Google Scholar
  54. Nies DH (2004b) Incidence and function of sigma factors in Ralstonia metallidurans and other bacteria. Arch Microbiol 181:255–268PubMedCrossRefGoogle Scholar
  55. Nies DH, Brown N (1998) Two-component systems in the regulation of heavy metal resistance. In: Silver S, Walden W (eds) Metal ions in gene regulation. Chapman Hall, London/New York, pp 77–103CrossRefGoogle Scholar
  56. Nies DH, Nies A, Chu L, Silver S (1989) Expression and nucleotide sequence of a plasmid determined divalent cation efflux system from Alcaligenes eutrophus. PNAS 86:7351–7355PubMedCrossRefGoogle Scholar
  57. Nies DH, Nies A, Chu L, Silver S (1995) Ion efflux systems involved in bacterial metal resistances. J Ind Microbiol 14(2):186–199PubMedCrossRefGoogle Scholar
  58. Nikoh N, Nakabachi A (2009) Aphids acquired symbiotic genes via lateral gene transfer. BMC Biol 7:12–25PubMedCrossRefGoogle Scholar
  59. Nowak E, Panjikar S, Konarev P, Svergun DI, Tucker PA (2006) The structural basis of signal transduction for the response regulator PrrA from Mycobacterium tuberculosis. J Biol Chem 281(14):9659–9666PubMedCrossRefGoogle Scholar
  60. Ochman H, Moran NA (2001) Genes lost and genes found: evolution of bacterial pathogenesis and symbiosis. Science 292:1096–1098PubMedCrossRefGoogle Scholar
  61. Ochman H, Lawrence LG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304PubMedCrossRefGoogle Scholar
  62. Osborn AM, Bruce KD, Strike P, Ritchie DA (1997) Distribution, diversity and evolution of the bacterial mercury resistance (mer) operon. FEMS Microbiol Rev 19(4):239–262PubMedCrossRefGoogle Scholar
  63. Ouzounis C, Sander C (1991) A structure-derived pattern for the detection of type I copper-binding domains in distantly related proteins. FEBS Lett 279(1):73–78PubMedCrossRefGoogle Scholar
  64. Page MD, Saunders NFW, Ferguson SJ (1997) Disruption of the Pseudomonas aeruginosa dipZ gene, encoding a putative protein disulfide reductase, leads to partial pleiotropic deficiency in c-type cytochrome biogenesis. Microbiology 143:3111–3122PubMedCrossRefGoogle Scholar
  65. Parish T, Smith DA, Roberts G, Betts J, Stoker NG (2003) The senX3-regX3 two-component regulatory system of Mycobacterium tuberculosis is required for virulence. Microbiology 149:1423–1435PubMedCrossRefGoogle Scholar
  66. Parkinson JS, Kofoid EC (1992) Communication modules in bacterial signaling proteins. Annu Rev Genet 26:71–112PubMedCrossRefGoogle Scholar
  67. Perron K, Caille O, Rossier C, van Delden C, Dumas J, Köhler T (2004) CzcR–CzcS, a two-component system involved in heavy metal and carbapenem resistance in Pseudomonas aeruginosa. J Biol Chem 279(10):8761–8768PubMedCrossRefGoogle Scholar
  68. Pip E (1991) Cadmium, copper, and lead in soils and garden produce near a metal smelter at Flin Flon, Manitoba. Bull Environ Contam Toxicol 46(5):790–796PubMedCrossRefGoogle Scholar
  69. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: bayesian phylogenetic inference under mixed models. Bionformatics 19(12):1572–1574CrossRefGoogle Scholar
  70. Schmidt T, Schlegel HG (1994) Combined nickel-cobalt-cadmium resistance encoded by the ncc locus of Alcaligenes xylosoxidans 31A. J Bacteriol 176:7045–7054PubMedGoogle Scholar
  71. Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385PubMedCrossRefGoogle Scholar
  72. Silver S (1998) Genes for all metals—a bacterial view of the periodic table. The 1996 Thom Award Lecture. J Ind Microbiol Biotechnol 20:1–12PubMedCrossRefGoogle Scholar
  73. Silver S, Phung LT (1996) Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol 50:753–789PubMedCrossRefGoogle Scholar
  74. Sober E, Wilson DS (1998) Unto others: the evolution and psychology of unselfish behavior. Harvard University Press, CambridgeGoogle Scholar
  75. Stadtmann ER (1993) Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions. Annu Rev Biochem 62:797–821CrossRefGoogle Scholar
  76. Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18:321–336PubMedCrossRefGoogle Scholar
  77. Sun HJ, Friedmann EI (2005) Communities adjust their temperature optima by shifting producer-to-consumer ratio, shown in lichens as models: II Experimental verification. Microb Ecol 49:528–535PubMedCrossRefGoogle Scholar
  78. Swenson W, Arendt J, Wilson DS (2000a) Artificial selection of microbial ecosystems for 3-chloroaniline biodegradation. Environ Microbiol 2:564–571PubMedCrossRefGoogle Scholar
  79. Swenson W, Wilson DS, Elias R (2000b) Artificial ecosystem selection. PNAS 97:9110–9114PubMedCrossRefGoogle Scholar
  80. Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, SunderlandGoogle Scholar
  81. Tamura K, Peterson D, Peterson N, Strecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCrossRefGoogle Scholar
  82. Thilákaraj R, Raghunathan K, Anishetty S, Pennathur G (2007) In silico identification of putative metal binding motifs. Bioinformatics 23(3):267–271PubMedCrossRefGoogle Scholar
  83. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882PubMedCrossRefGoogle Scholar
  84. Van der Meer JR (2006) Environmental pollution promotes selection of microbial degradation pathway. Front Ecol Environ 4(1):35–42CrossRefGoogle Scholar
  85. Voloudakis AE, Reignier TM, Cooksey DA (2005) Regulation of resistance to copper in Xanthomonas axonopodis pv. vesicatoria. Appl Environ Microbiol 71(2):782–789PubMedCrossRefGoogle Scholar
  86. West AH, Stock AM (2001) Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem Sci 26(6):369–376PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Biological SciencesBowling Green State UniversityBowling GreenUSA

Personalised recommendations