Skip to main content
Log in

Membrane Environment Imposes Unique Selection Pressures on Transmembrane Domains of G Protein-Coupled Receptors

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

An Erratum to this article was published on 28 February 2013

Abstract

We have investigated the influence of the plasma membrane environment on the molecular evolution of G protein-coupled receptors (GPCRs), the largest receptor family in Metazoa. In particular, we have analyzed the site-specific rate variation across the two primary structural partitions, transmembrane (TM) and extramembrane (EM), of these membrane proteins. We find that TM domains evolve more slowly than do EM domains, though TM domains display increased rate heterogeneity relative to their EM counterparts. Although the majority of residues across GPCRs experience strong to weak purifying selection, many GPCRs experience positive selection at both TM and EM residues, albeit with a slight bias towards the EM. Further, a subset of GPCRs, chemosensory receptors (including olfactory and taste receptors), exhibit increased rates of evolution relative to other GPCRs, an effect which is more pronounced in their TM spans. Although it has been previously suggested that the TM’s low evolutionary rate is caused by their high percentage of buried residues, we show that their attenuated rate seems to stem from the strong biophysical constraints of the membrane itself, or by functional requirements. In spite of the strong evolutionary constraints acting on the TM spans of GPCRs, positive selection and high levels of evolutionary rate variability are common. Thus, biophysical constraints should not be presumed to preclude a protein’s ability to evolve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723

    Article  Google Scholar 

  • Bockaert J, Pin JP (1999) Molecular tinkering of G protein-coupled receptors: an evolutionary success. EMBO J 18:1723–1729

    Article  PubMed  CAS  Google Scholar 

  • Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell (Cambridge, MA, US) 5:175–187

    Article  Google Scholar 

  • Bywater RP (2005) Location and nature of the resiudes important for ligand recognition in G protein-coupled receptors. J Mol Recognit 18:60–72

    Article  PubMed  CAS  Google Scholar 

  • Clark AG, Glanowski S, Nielsen R, Thomas PD, Kejariwal A, Todd MA, Tanenbaum DM, Civello D, Lu F, Murphy B (2003) Inferring nonneutral evolution from human–chimp–mouse orthologous gene trios. Science 302:1960–1963

    Article  PubMed  CAS  Google Scholar 

  • Dorsam RT, Gutkind JS (2007) G coupled-protein receptors and cancer. Nat Rev Genet 7:79–94

    Article  CAS  Google Scholar 

  • Duret L, Mouchiroud D (2000) Determinants of substitution rates in mammalian genes: expression pattern affects selection intensity but not mutation rate. Mol Biol Evol 17:6874

    Google Scholar 

  • Feldmesser E, Oldener T, Khen M, Yanai I, Ophir R, Lancet D (2006) Widespread ectopic expression of olfactory receptor genes. BMC Genomics 7:121138

    Article  Google Scholar 

  • Franzosa EA, Xia Y (2009) Structural determinants of protein evolution are context-sensitive at the residue level. Mol Biol Evol 26:2387–2395

    Article  PubMed  CAS  Google Scholar 

  • Fredriksson R, Schioth HB (2005) The repertoire of G protein-coupled receptors in fully sequenced genomes. Mol Pharmacol 67:1414–1425

    Article  PubMed  CAS  Google Scholar 

  • Fredriksson R, Lagerstrom MC, Lundin LG, Schioth HB (2003) The G protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63:1256–1272

    Article  PubMed  CAS  Google Scholar 

  • Gilad Y, Segre D, Skorecki K, Nachman MW, Lancet D, Sharon D (2000) Dichotomy of single-nucleotide polymorphism haplotypes in olfactory receptor genes and pseudogenes. Nat Genet 26:221–224

    Article  PubMed  CAS  Google Scholar 

  • Gilad Y, Man O, Glusman G (2005) A comparison of the human and chimpanzee olfactory receptor gene repertoires. Genome Res 15:224–230

    Article  PubMed  CAS  Google Scholar 

  • Gimelbrant AA, Skaletsky H, Chess A (2004) Selective pressures on the olfactory receptor repertoire since the human–chimpanzee divergence. Proc Natl Acad Sci USA 101:9019–9022

    Article  PubMed  CAS  Google Scholar 

  • Goldman N, Yang Z (1994) A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol Biol Evol 11:725–736

    PubMed  CAS  Google Scholar 

  • Julenius K, Pedersen AG (2006) Protein evolution is faster outside the cell. Mol Biol Evol 23:2039–2048

    Article  PubMed  CAS  Google Scholar 

  • Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637

    Article  PubMed  CAS  Google Scholar 

  • Katoh K, Misawa K, Kuma KI, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res Suppl 30:3059–3066

    Article  PubMed  CAS  Google Scholar 

  • Kosakovsky Pond S, Frost SDW (2005) Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol 22:1208–1222

    Article  PubMed  Google Scholar 

  • Kosakovsky Pond SL, Frost SDW, Muse SV (2005) HyPhy: hypothesis testing using phylogenies. Bioinform Biol Insights 12:676–679

    Article  Google Scholar 

  • Kristiansen K (2004) Molecular mechanisms of ligand binding, signaling, and regulation within the superfamily of G protein-coupled receptors: molecular modeling and mutagenesis approaches to receptor structure and function. Pharmacol Ther 103:21–80

    Article  PubMed  CAS  Google Scholar 

  • Lagerstrom MC, Schioth HB (2008) Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat Rev Drug Discov 7:339–357

    Article  PubMed  Google Scholar 

  • Liao BY, Scott NM, Zhang J (2007) Impacts of gene essentiality, expression pattern, and gene compactness on the evolutionary rate of mammalian proteins. Mol Biol Evol 24:2072–2080

    Google Scholar 

  • Lu ZL, Hulme EC (2000) A network of conserved intramolecular contacts defines the off-state of the transmembrane switch mechanism in a seven-transmembrane receptor. J Biol Chem 275:5682–5686

    Article  PubMed  CAS  Google Scholar 

  • May LT, Leach K, Sexton PM, Chistopoulus A (2007) Allosteric modulation of G protein-coupled receptors. Annu Rev Pharmacol Toxicol 47:1–51

    Article  PubMed  CAS  Google Scholar 

  • Meyer AG, Wilke CO (2012) Integrating sequence variation and protein structure to identify sites under selection. Mol Biol Evol

  • Mombaerts P (2004) Genes and ligands for odorant, vomeronasal and taste receptors. Nat Rev Neurosci 5:263–278

    Article  PubMed  CAS  Google Scholar 

  • Nei M, Niimura Y (2007) Extensive gains and losses of olfactory receptor genes in mammalian evolution. PLoS ONE 2:e708

    Article  PubMed  Google Scholar 

  • Nielsen R, Yang Z (1998) Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genet Mol Res 148:929–936

    PubMed  CAS  Google Scholar 

  • Nielsen R, Bustamante C, Clark AG, Glanowski S, Sackton TB, Hubisz MJ, Fiedel-Alon A, Tanenbaum DM, Civello D, White TJ (2005) A scan for positively selected genes in the genomes of humans and chimpanzees. PLoS Biol 3:e170

    Article  PubMed  Google Scholar 

  • Niimura Y, Nei M (2003) Evolution of olfactory receptor genes in the human genome. Proc Natl Acad Sci USA 100:12,235–12,240

    Article  CAS  Google Scholar 

  • Oberai A, Joh NH, Pettit FK, Bowie JU (2009) Structural imperatives impose diverse evolutionary constraints on helical membrane proteins. Proc Natl Acad Sci USA 106:17,747–17,750

    Article  CAS  Google Scholar 

  • Pal C, Papp B, Lercher MJ (2006) An integrated view of protein evolution. Nat Rev Genet 7:337–348

    Article  PubMed  CAS  Google Scholar 

  • Park PSH, Lodowski DT, Palczewski K (2008) Activation of G protein-coupled receptors: beyond two-state models and tertiary conformational changes. Annu Rev Pharmacol Toxicol 48:107–141

    Article  PubMed  CAS  Google Scholar 

  • Penn O, Privman E, Landan G, Graur D, Pupko T (2010) An alignment confidence score capturing robustness to guide tree uncertainty. Mol Biol Evol 27:1759–1767

    Article  PubMed  CAS  Google Scholar 

  • Privman E, Penn O, Pupko T (2012) Improving the performance of positive selection inference by filtering unreliable alignment regions. Mol Biol Evol 29:1–5

    Article  PubMed  CAS  Google Scholar 

  • Ramsey DC, Scherrer MP, Zhou T, Wilke CO (2011) The relationship between relative solvent accessibility and evolutionary rate in protein evolution. Genet Mol Res 188:479–488

    Article  PubMed  CAS  Google Scholar 

  • Rosenbaum DM, Rasmussen SGF, Kobilka BK (2009) The structure and function of G protein-coupled receptors. Nat Biotechnol 459:356–363

    Article  PubMed  CAS  Google Scholar 

  • Schoneberg T, Schulz A, Biebermann H, Hermsdorf T, Rompler H, Sangkuhl K (2004) Mutant G protein-coupled receptors as a cause of human diseases. Pharmacol Ther 104:173–206

    Article  PubMed  Google Scholar 

  • Spalding TA, Burstein ES, Henderson SC, Ducote KR, Brann MR (1998) Identification of a ligand-dependent switch within a muscarinic receptor. J Biol Chem 273:21,563–21,568

    Article  CAS  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinform Biol Insights 22:2688–2690

    Article  PubMed  CAS  Google Scholar 

  • Stevens TJ, Arkin IT (2001) Substitution rates in alpha-helical transmembrane proteins. Prot Sci 10:2507–2517

    Article  CAS  Google Scholar 

  • Surgand J, Rodrigo J, Kellenberger E, Rognan D (2006) A chemogenomic analysis of the transmembrane binding cavity of human G protein-coupled receptors. Proteins Struct Funct Genet 62:509–538

    Article  PubMed  CAS  Google Scholar 

  • Tien M, Meyer AG, Spielman SJ, Wilke CO (2012) Maximum allowed solvent accessibilites of residues in proteins. ArXiv:1211.4251 [q-bio.BM]

  • Tourasse NJ, Li WH (2000) Selective constraints, amino acid composition, and the rate of protein evolution. Mol Biol Evol 17:656–664

    Article  PubMed  CAS  Google Scholar 

  • Vaidehi N, Floriano WB, Trabanino R, Hall SE, Freddolino P, Choi EJ, Zamanakos G, Goddard III WA (2002) Prediction of structure and function of G protein-coupled receptors. Proc Natl Acad Sci USA 99:12,622–12,627

    Article  CAS  Google Scholar 

  • Vanderhaeghen P, Schurmans S, Vassart G, Parmentier M (1997) Specific repertoire of olfactory receptor genes in the male germ cells of several mammalian species. Genomics 39:239–246

    Article  PubMed  CAS  Google Scholar 

  • Vilella AJ, Severin J, Ureta-Vidal A, Heng L, Durbin R, Birney E (2008) EnsemblCompara GeneTrees: complete, duplication-aware phylogenetic trees in vertebrates. Genome Res 19:327–335

    Article  PubMed  Google Scholar 

  • Wistrand M, Käll L, Sonnhammer ELL (2006) A general model of G protein-coupled receptor sequences and its application to detect remote homologs. Prot Sci 15:509–521

    Article  CAS  Google Scholar 

  • Yang Z, Nielsen R, Goldman N, Krabbe Pedersen AM (2000) Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genet Mol Res 155:431–449

    PubMed  CAS  Google Scholar 

  • Zhang X, De la Cruz O, Pinto JM, Nicolae D, Firestein S, Gilad Y (2007) Characterizing the expression of the human olfactory receptor gene family using a novel DNA microarray. Genome Biol 8:R86

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant R01 GM088344 to C.O.W. We thank Austin G. Meyer for his thoughtful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie J. Spielman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (RTF 5 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spielman, S.J., Wilke, C.O. Membrane Environment Imposes Unique Selection Pressures on Transmembrane Domains of G Protein-Coupled Receptors. J Mol Evol 76, 172–182 (2013). https://doi.org/10.1007/s00239-012-9538-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-012-9538-8

Keywords

Navigation