Journal of Molecular Evolution

, Volume 75, Issue 3–4, pp 119–129 | Cite as

Euglena gracilis and Trypanosomatids Possess Common Patterns in Predicted Mitochondrial Targeting Presequences

  • Katarína Krnáčová
  • Matej VestegEmail author
  • Vladimír Hampl
  • Čestmír Vlček
  • Anton Horváth


Euglena gracilis possessing chloroplasts of secondary green algal origin and parasitic trypanosomatids Trypanosoma brucei, Trypanosoma cruzi and Leishmania major belong to the protist phylum Euglenozoa. Euglenozoa might be among the earliest eukaryotic branches bearing ancestral traits reminiscent of the last eukaryotic common ancestor (LECA) or missing features present in other eukaryotes. LECA most likely possessed mitochondria of endosymbiotic α-proteobacterial origin. In this study, we searched for the presence of homologs of mitochondria-targeted proteins from other organisms in the currently available EST dataset of E. gracilis. The common motifs in predicted N-terminal presequences and corresponding homologs from T. brucei, T. cruzi and L. major (if found) were analyzed. Other trypanosomatid mitochondrial protein precursor (e.g., those involved in RNA editing) were also included in the analysis. Mitochondrial presequences of E. gracilis and these trypanosomatids seem to be highly variable in sequence length (5–118 aa), but apparently share statistically significant similarities. In most cases, the common (M/L)RR motif is present at the N-terminus and it is probably responsible for recognition via import apparatus of mitochondrial outer membrane. Interestingly, this motif is present inside the predicted presequence region in some cases. In most presequences, this motif is followed by a hydrophobic region rich in alanine, leucine, and valine. In conclusion, either RR motif or arginine-rich region within hydrophobic aa-s present at the N-terminus of a preprotein can be sufficient signals for mitochondrial import irrespective of presequence length in Euglenozoa.


Cleaved targeting sequence Euglenids Euglenozoa Excavata Kinetoplastids Mitochondrial protein import Protein motifs 



This work was supported by Scientific Grant Agency of the Slovak Ministry of Education and the Academy of Sciences (grants 1/0416/09 and 1/0393/09), Comenius University Grants (UK/54/2011), Czech Science Foundation grant P506/11/1320, and is the result of the project implementation: “The Improvement of Centre of excellence for exploitation of informational biomacromolecules in improvement of quality of life,” ITMS 26240120027, supported by the Research & Development Operational Programme funded by the ERDF. This paper has been published in frame of the project “Strengthening research institutions at the University of Ostrava,” CZ.1.07/2.3.00/30.0047, which is co-financed by the European Social Fund and the state budget of the Czech Republic. We thank Dr. Broňa Brejová (Department of Computer Science, Faculty of Mathematics, Physics, and Informatics, Comenius University, Bratislava, Slovakia), Dr. Tomáš Vinař (Department of Applied Informatics, Faculty of Mathematics, Physics, and Informatics, Comenius University, Bratislava, Slovakia), and Dr. Pavel Doležal and Vojtěch Žárský (both from the Department of Parasitology, Faculty of Science, Charles University in Prague) for help with the choice of appropriate bioinformatic programs to analyze the data.

Supplementary material

239_2012_9523_MOESM1_ESM.pdf (412 kb)
Supplementary material 1 (PDF 411 kb)


  1. Ahmadinejad N, Dagan T, Martin W (2007) Genome history in the symbiotic hybrid Euglena gracilis. Gene 402:35–39PubMedCrossRefGoogle Scholar
  2. Allen CA, Jackson AP, Rigden DJ, Willis AC, Ferguson SJ, Ginger ML (2008) Order within a mosaic distribution of mitochondrial c-type cytochrome biogenesis systems? FEBS J 275:2385–2402PubMedCrossRefGoogle Scholar
  3. Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. In: proceedings of the second international conference on intelligent systems for molecular biology, AAAI Press, Menlo Park, pp 28–36Google Scholar
  4. Bonen L (1993) Trans-splicing of pre-mRNA in plants, animals, and protists. FASEB J 7:40–46PubMedGoogle Scholar
  5. Bourne PE, Addess KJ, Bluhm WF, Chen L, Deshpande N, Feng Z, Fleri W, Green R, Merino-Ott JC, Townsend-Merino W, Weissig H, Westbrook J, Berman HM (2004) The distribution and query systems of the RCSB protein data bank. Nucl Acids Res 32:D223–D225PubMedCrossRefGoogle Scholar
  6. Breglia SA, Yubuki N, Hoppenrath M, Leander BS (2010) Ultrastructure and molecular phylogenetic position of a novel euglenozoan with extrusive episymbiotic bacteria: Bihospites bacati n. gen. et sp. (Symbiontida). BMC Microbiol 10:145PubMedCrossRefGoogle Scholar
  7. Bromley EV, Taylor MC, Wilkinson SR, Kelly JM (2004) The amino terminal domain of novel WD repeat protein from Trypanosoma cruzi contains a non-canonical mitochondrial targeting signal. Int J Parasitol 34:63–71PubMedCrossRefGoogle Scholar
  8. Callahan H, Litaker RW, Noga EJ (2002) Molecular taxonomy of the suborder Bodonina (Order Kinetoplastida), including the important fish parasite, Ichthyobodo nacator. J Eukaryot Microbiol 49:119–128PubMedCrossRefGoogle Scholar
  9. Cavalier-Smith T (2002) The phagotrophic origin of eukaryotes and the phylogenetic classification of Protozoa. Int J Syst Evol Microbiol 52:297–354PubMedGoogle Scholar
  10. Cavalier-Smith T (2010) Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree. Biol Lett 6:342–345PubMedCrossRefGoogle Scholar
  11. Chan Y-F, Moestrup Ø, Chang J (2012) On Keelungia pulex nov. gen. et nov. sp., a heterotrophic euglenoid flagellate that lacks pellicular plates (Euglenophyceae, Euglenida). Eur J Protistol. Accessed 13 Aug 2012
  12. Claros MG, Vincens P (1996) Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem 241:779–786PubMedCrossRefGoogle Scholar
  13. Cui J-Y, Mukai K, Saeki K, Matsubara H (1994) Molecular cloning and nucleotide sequences of cDNAs encoding subunits I, II and IX of Euglena gracilis mitochondrial complex III. J Biochem 115:98–107PubMedGoogle Scholar
  14. Deschamps P, Lara E, Marande W, López-García P, Ekelund F, Moreira D (2011) Phylogenomic analysis of kinetoplastids supports that trypanosomatids arose from within bodonids. Mol Biol Evol 28:53–58PubMedCrossRefGoogle Scholar
  15. Desmond E, Brochier-Armanet C, Forterre P, Gribaldo S (2011) On the last common ancestor and early evolution of eukaryotes: Reconstructing the history of mitochondrial ribosomes. Res Microbiol 162:53–70PubMedCrossRefGoogle Scholar
  16. Di Giulio M (2007) The universal ancestor and the ancestors of Archaea and Bacteria were anaerobes whereas the ancestor of the Eukarya domain was an aerobe. J Evol Biol 20:543–548PubMedCrossRefGoogle Scholar
  17. Dooijes D, Chaves I, Kieft RA, Dirks-Mulder A, Martin W, Borst P (2000) Base J originally found in Kinetoplastida is also a minor constituent of nuclear DNA of Euglena gracilis. Nucl Acids Res 28:3017–3021PubMedCrossRefGoogle Scholar
  18. Durnford DG, Gray MW (2006) Analysis of Euglena gracilis plastid-targeted proteins reveals different classes of transit sequences. Eukaryot Cell 5:2079–2091PubMedCrossRefGoogle Scholar
  19. Dyková I, Fiala I, Lom J, Lukeš J (2003) Perkinsiella amoebae-like endosymbionts of Neoparamoeba spp., relatives of the kinetoplastid Ichthyobodo. Eur J Protistol 39:37–52CrossRefGoogle Scholar
  20. Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016PubMedCrossRefGoogle Scholar
  21. Ferreira VD, Rocchette I, Conforti V, Bench S, Feldman R, Levin MJ (2007) Gene expression patterns in Euglena gracilis: insight into the cellular response to environmental stress. Gene 389:136–145CrossRefGoogle Scholar
  22. Frantz C, Ebel C, Paulus F, Imbault P (2000) Characterization of trans-splicing in Euglenoids. Curr Genet 37:349–355PubMedCrossRefGoogle Scholar
  23. Frith MC, Saunders NFW, Kobe B, Bailey TL (2008) Discovering sequence motifs with arbitrary insertions and deletions. PLoS Comput Biol 4:e1000071PubMedCrossRefGoogle Scholar
  24. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005). Protein identification and analysis tools on the ExPASy Server. In: Walker JM (ed) The proteomics protocols handbook, Humana Press, Totowa, pp 571–607Google Scholar
  25. Gawryluk RMR, Gray MW (2009) A split and rearranged nuclear gene encoding the iron-sulfur subunit of mitochondrial succinate dehydrogenase in Euglenozoa. BMC Res Notes 2:16PubMedCrossRefGoogle Scholar
  26. Ginger ML, Fritz-Laylin LK, Fulton C, Cande WZ, Dawson SC (2010) Intermediary metabolism in protists: a sequence-based view of facultative anaerobic metabolism in evolutionary diverse eukaryotes. Protist 161:642–671PubMedCrossRefGoogle Scholar
  27. Hajduk SL, Harris ME, Pollard VW (1993) RNA editing in kinetoplastid mitochondria. FASEB J 7:54–63PubMedGoogle Scholar
  28. Hampl V, Hug L, Leigh JW, Dacks JB, Lang BF, Simpson AG, Roger AJ (2009) Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups”. Proc Natl Acad Sci USA 106:3859–3864PubMedCrossRefGoogle Scholar
  29. Häusler T, Stierhof YD, Blattner J, Clayton C (1997) Conservation of mitochondrial targeting sequence function in mitochondrial and hydrogenosomal proteins from the early-branching eukaryotes Crithidia, Trypanosoma and Trichomonas. Eur J Cell Biol 73:240–251PubMedGoogle Scholar
  30. Kořený L, Oborník M (2011) Sequence evidence for the presence of two tetrapyrrole pathways in Euglena gracilis. Genome Bio Evol 3:359–364CrossRefGoogle Scholar
  31. Leander BS (2004) Did trypanosomatid parasites have photosynthetic ancestors? Trends Microbiol 12:251–258PubMedCrossRefGoogle Scholar
  32. Leander BS, Triemer RE, Farmer MA (2001) Character evolution in heterotrophic euglenids. Eur J Protistol 37:337–356CrossRefGoogle Scholar
  33. Liang XH, Haritan A, Uliel S, Michaeli S (2003) Trans and cis splicing in trypanosomatids: mechanism, factors, and regulation. Eukaryot Cell 2:830–840PubMedCrossRefGoogle Scholar
  34. Likic VA, Doležal P, Celik N, Dagley M, Lithgow T (2010) Using hidden markov models to discover new protein transport machineries. Methods Mol Biol 619:271–284PubMedCrossRefGoogle Scholar
  35. Linton EW, Karnkowska-Ishikawa A, Kim JI, Shin W, Bennett MS, Kwiatowski J, Zakryś B, Triemer RE (2010) Reconstructing euglenoid evolutionary relationships using three genes: nuclear SSU and LSU, and chloroplast SSU rDNA sequences and the description of Euglenaria gen. nov. (Euglenophyta). Protist 161:603–619PubMedCrossRefGoogle Scholar
  36. Lithgow T, Schneider A (2010) Evolution of macromolecular import pathways in mitochondria, hydrogenosomes and mitosomes. Phil Trans R Soc B 365:799–817PubMedCrossRefGoogle Scholar
  37. Long S, Jirků M, Ayala FJ, Lukeš J (2008) Mitochondrial localization of human frataxin is necessary but processing is not for rescuing frataxin deficiency in Trypanosoma brucei. Proc Natl Acad Sci USA 105:1373–13468Google Scholar
  38. Marande W, Burger G (2007) Mitochondrial DNA as a genomic jigsaw puzzle. Science 318:415PubMedCrossRefGoogle Scholar
  39. Martin W, Müller M (1998) The hydrogen hypothesis for the first eukaryote. Nature 392:37–41PubMedCrossRefGoogle Scholar
  40. Maslov DA, Zíková A, Kyselová I, Lukeš J (2002) A putative novel nuclear-encoded subunit of cytochrome c oxidase complex in trypanosomatids. Mol Biochem Parasitol 125:113–225PubMedCrossRefGoogle Scholar
  41. Moreira D, López-García P, Vickerman K (2004) An updated view of kinetoplastid phylogeny using environmental sequences and a closer outgroup: proposal for a new classification of the Class kinetoplastea. Int J Syst Evol Microbiol 54:1861–1875PubMedCrossRefGoogle Scholar
  42. Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6PubMedCrossRefGoogle Scholar
  43. Nozaki H, Ohta N, Matsuzaki M, Misumi O, Kuroiwa T (2003) Phylogeny of plastids based on cladistic analysis of gene loss inferred from complete plastid genome sequences. J Mol Evol 57:377–382PubMedCrossRefGoogle Scholar
  44. Priest JW, Hajduk SL (1996) In vitro import of the Rieske iron-sulfur protein by trypanosome mitochondria. J Biol Chem 271:20060–20069PubMedCrossRefGoogle Scholar
  45. Priest JW, Hajduk SL (2003) Trypanosoma brucei cytochrome c1 is imported into mitochondria along an unusual pathway. J Biol Chem 287:15084–15094CrossRefGoogle Scholar
  46. Priest JW, Wood ZA, Hajduk SL (1993) Cytochromes c1 of kinetoplastid protozoa lack mitochondrial targeting presequences. Biochim Biophys Acta 1144:229–231PubMedCrossRefGoogle Scholar
  47. Pusnik M, Schmidt O, Perry AJ, Oeljeklaus S, Niemann M, Warcheid B, Lithgow T, Meisinger C, Schneider A (2011) Mitochondrial preprotein translocase of trypanosomatids has a bacterial origin. Curr Biol 21:1738–1743PubMedCrossRefGoogle Scholar
  48. Rogers MB, Gilson PR, Su V, McFadden GI, Keeling PJ (2007) The complete chloroplast genome of the chlorarachniophyte Bigelowiella natans: evidence for independent origins of chlorarachniophyte and euglenid secondary endosymbionts. Mol Biol Evol 24:54–62PubMedCrossRefGoogle Scholar
  49. Schneider A, Bursa D, Lithgow T (2008) The direct route: a simplified pathway for protein import into the mitochondrion of trypanosomes. Trends Cell Biol 18:12–18PubMedCrossRefGoogle Scholar
  50. Simpson AGB (1997) The identity and composition of the Euglenozoa. Arch Protistenkd 148:318–328CrossRefGoogle Scholar
  51. Simpson AGB, Roger AJ (2004) Protein phylogenies robustly resolve the deep-level relationships within Euglenozoa. Mol Phylogenet Evol 30:201–212PubMedCrossRefGoogle Scholar
  52. Simpson L, Thiemann OH, Savill NJ, Alfonzo JD, Maslov DA (2000) Evolution of RNA editing in trypanosome mitochondria. Proc Natl Acad Sci USA 97:6986–6993PubMedCrossRefGoogle Scholar
  53. Simpson AGB, Lukeš J, Roger AJ (2002) The evolutionary history of kinetoplastids and their kinetoplasts. Mol Biol Evol 19:2071–2083PubMedCrossRefGoogle Scholar
  54. Simpson AGB, Gill EE, Callahan HA, Litaker RW, Roger AJ (2004) Early evolution within kinetoplastids (Euglenozoa), and the late emergence of trypanosomatids. Protist 155:407–422PubMedCrossRefGoogle Scholar
  55. Simpson AGB, Stevens JR, Lukeš J (2006) The evolution of kinetoplastid flagellates. Trends Parasitol 22:168–174PubMedCrossRefGoogle Scholar
  56. Singha UK, Paprah E, Williams R, Saha L, Chaudhuri M (2008) Characterization of the mitochondrial inner protein translocator Tim17 from Trypanosoma brucei. Mol Biochem Parasitol 159:30–43PubMedCrossRefGoogle Scholar
  57. Söding J (2005) Protein homology detection by HMM–HMM comparison. Bioinformatics 21:951–960PubMedCrossRefGoogle Scholar
  58. Spencer DF, Gray MW (2011) Ribosomal RNA genes in Euglena gracilis mitochondrial DNA: fragmented genes in a seemingly fragmented genome. Mol Genet Genomics 285:19–31PubMedCrossRefGoogle Scholar
  59. Stuart K, Panigrahi AK (2002) RNA editing: complexity and complications. Mol Microbiol 45:591–596PubMedCrossRefGoogle Scholar
  60. Tasker M, Timms M, Hendriks E, Matthews K (2001) Cytochrome oxidase subunit VI of Trypanosoma brucei is imported without a cleaved presequence and is developmentally regulated at both RNA and protein levels. Mol Microbiol 39:272–285PubMedCrossRefGoogle Scholar
  61. Triemer RE, Farmer MA (1991) An ultrastructural comparison of the mitotic apparatus, feeding apparatus, flagellar apparatus and cytoskeleton in euglenoids and kinetoplastids. Protoplasma 164:91–104CrossRefGoogle Scholar
  62. Turmel M, Gagnon M-C, O`Kelly CJ, Lemieux C (2009) The chloroplast genomes of the green algae Pyramimonas, Monomastix, and Pycnococcus shed new light on the evolutionary history of prasinophytes and the origin of the secondary chloroplasts of euglenids. Mol Biol Evol 26:631–648PubMedCrossRefGoogle Scholar
  63. Uboldi AD, Lueder FB, Walsh P, Spurck T, McFadden GI, Curtis J, Likic VA, Perugini MA, Barson M, Lithgow T, Handman E (2006) A mitochondrial protein affects cell morphology, mitochondrial segregation and virulence in Leishmania. Int J Parasitol 36:1499–1514PubMedCrossRefGoogle Scholar
  64. Vesteg M, Krajčovič J (2008) Origin of eukaryotic cells as a symbiosis of parasitic α-proteobacteria in the periplasm of two-membrane-bounded sexual pre-karyotes. Commun Integr Biol 1:104–113PubMedCrossRefGoogle Scholar
  65. Vesteg M, Krajčovič J (2011) The falsifiability of the models for the origin of eukaryotes. Curr Genet 57:367–390PubMedCrossRefGoogle Scholar
  66. Vesteg M, Vacula R, Steiner JM, Mateášiková B, Löffelhardt W, Brejová B, Krajčovič J (2010) A possible role for short introns in the acquisition of stroma-targeting peptides in the flagellate Euglena gracilis. DNA Res 17:223–231PubMedCrossRefGoogle Scholar
  67. Vlček Č, Marande W, Teijeiro S, Lukeš J, Burger G (2011) Systematically fragmented genes in a multipartite mitochondrial genome. Nucl Acids Res 39:979–988PubMedCrossRefGoogle Scholar
  68. von der Heyden S, Chao EE, Vickerman K, Cavalier-Smith T (2004) Ribosomal RNA phylogeny of bodonid and diplonemid flagellates and the evolution of Euglenozoa. J Eukaryot Microbiol 51:402–416PubMedCrossRefGoogle Scholar
  69. Williams S, Saha L, Singha UK, Chaudhuri M (2008) Trypanosoma brucei: differential requirement of membrane potential for import of proteins into mitochondria in two developmental stages. Exp Parasitol 118:420–433PubMedCrossRefGoogle Scholar
  70. Yamaguchi A, Yubuki N, Leander BS (2012) Morphostasis in a novel eukaryote illuminates the evolutionary transition from phagotrophy: description of Rapaza viridis n. gen. et sp. (Euglenozoa, Euglenida). BMC Evol Biol 12:29PubMedCrossRefGoogle Scholar
  71. Yubuki N, Edgcomb VP, Bernhardt JM, Leander BS (2009) Ultrastructure and molecular phylogeny of Calkinsia aureus: cellular identity of a novel clade of deep-sea euglenozoans with epibiotic bacteria. BMC Microbiol 9:16PubMedCrossRefGoogle Scholar
  72. Žárský V, Tachezy J, Doležal P (2012) Tom40 is likely common to all mitochondria. Curr Biol 22:R479–R481PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Katarína Krnáčová
    • 1
  • Matej Vesteg
    • 2
    • 3
    • 6
    Email author
  • Vladimír Hampl
    • 4
  • Čestmír Vlček
    • 5
  • Anton Horváth
    • 1
  1. 1.Department of Biochemistry, Faculty of Natural SciencesComenius UniversityBratislavaSlovakia
  2. 2.Department of Biology and Ecology, Faculty of ScienceUniversity of OstravaOstravaCzech Republic
  3. 3.Department of Genetics, Faculty of Natural SciencesComenius UniversityBratislavaSlovakia
  4. 4.Department of Parasitology, Faculty of ScienceCharles University in PraguePragueCzech Republic
  5. 5.Institute of Molecular GeneticsAcademy of Sciences of the Czech RepublicPragueCzech Republic
  6. 6.Department of Biology and Ecology, Faculty of ScienceUniversity of OstravaOstravaCzech Republic

Personalised recommendations